A156133 Denominator coefficients of infinite over the Fibonacci sequence: p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Denominator(p(x,n)).
1, -1, 1, 1, 1, -2, -2, 1, 1, -3, -6, 3, 1, 1, -4, -19, -4, 1, -1, 8, 40, -60, -40, 8, 1, 1, -13, -104, 260, 260, -104, -13, 1, 1, -21, -273, 1092, 1820, -1092, -273, 21, 1, 1, -33, -747, 3894, 16270, 3894, -747, -33, 1, -1, 55, 1870, -19635, -85085, 136136, 85085
Offset: 0
Examples
{1}, {-1, 1, 1}, {1, -2, -2, 1}, {1, -3, -6, 3, 1}, {1, -4, -19, -4, 1}, {-1, 8, 40, -60, -40, 8, 1}, {1, -13, -104, 260, 260, -104, -13, 1}, {1, -21, -273, 1092, 1820, -1092, -273, 21, 1}, {1, -33, -747, 3894, 16270, 3894, -747, -33, 1}, {-1, 55, 1870, -19635, -85085, 136136, 85085, -19635, -1870, 55, 1}, {1, -89, -4895, 83215, 582505, -1514513, -1514513, 582505, 83215, -4895, -89, 1}
Programs
-
Mathematica
Clear[t0, p, x, n, m]; p[x_, n_] = (1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}] Table[Denominator[FullSimplify[ExpandAll[p[x, n]]]], {n, 0, 10}]; Flatten[%]
Formula
p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Denominator(p(x,n)).
Comments