A156153
Primes p such that p == 2 (mod pi(p)) and pi(p) is prime.
Original entry on oeis.org
5, 41, 367, 9559817, 514275529
Offset: 1
-
p=c=0; until(0, until( isprime(c++), p=nextprime(p+1)); (p-2)%c & next; print1(p, ", ")); \\ Modified by Jinyuan Wang, Feb 22 2020
A156154
Primes p such that prime(p)=2 (mod p), where prime(p)=A000040(p) is the p-th prime.
Original entry on oeis.org
3, 13, 73, 637321, 27067133
Offset: 1
-
Select[Prime[Range[17*10^5]],Mod[Prime[#],#]==2&] (* Harvey P. Dale, Dec 28 2022 *)
-
p=c=0; until(0, until( isprime(c++), p=nextprime(p+1)); (p-2)%c & next; print1( c","))
A156148
Numbers k such that prime(prime(k)) + 2 == 0 (mod prime(k)), where prime(p)=A000040(p) is the p-th prime.
Original entry on oeis.org
5, 20, 51891, 51893
Offset: 1
-
Select[Range[52000],Mod[Prime[Prime[#]]+2,Prime[#]]==0&] (* Harvey P. Dale, Jul 12 2022 *)
-
p=c=0; until(0, until( isprime(c++), p=nextprime(p+1)); (p+2)%c & next; print1( primepi(c)","))
Showing 1-3 of 3 results.
Comments