A156162 a(n) = 34*a(n-1)-a(n-2)-2312 for n > 2; a(1)=625, a(2)=18769.
625, 18769, 635209, 21576025, 732947329, 24898630849, 845820499225, 28732998340489, 976076123075089, 33157855186210225, 1126391000208070249, 38264136151888175929, 1299854238163989909025, 44156779961423768728609
Offset: 1
Keywords
Examples
a(3) = 34*a(2)-a(1)-2312 = 34*18769-625-2312 = 635209.
Links
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Programs
-
Mathematica
RecurrenceTable[{a[1]==625,a[2]==18769,a[n]==34a[n-1]-a[n-2]-2312},a,{n,20}] (* or *) LinearRecurrence[{35,-35,1},{625,18769,635209},20] (* Harvey P. Dale, Sep 29 2016 *)
-
PARI
{m=14; v=concat([625 ,18769], vector(m-2)); for(n=3, m, v[n]=34*v[n-1]-v[n-2]-2312); v}
Formula
a(n) = (578+(387-182*sqrt(2))*(17+12*sqrt(2))^n+(387+182*sqrt(2))*(17-12*sqrt(2))^n)/8.
G.f.: x*(625-3106*x+169*x^2)/((1-x)*(1-34*x+x^2)).
Extensions
G.f. corrected by Klaus Brockhaus, Sep 23 2009
Comments