cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A156164 Decimal expansion of 17 + 12*sqrt(2).

Original entry on oeis.org

3, 3, 9, 7, 0, 5, 6, 2, 7, 4, 8, 4, 7, 7, 1, 4, 0, 5, 8, 5, 6, 2, 0, 2, 6, 4, 6, 9, 0, 5, 1, 6, 3, 7, 6, 9, 4, 2, 8, 3, 6, 0, 6, 2, 5, 0, 4, 5, 2, 3, 3, 7, 6, 8, 7, 8, 1, 2, 0, 1, 5, 6, 8, 5, 5, 8, 8, 8, 7, 8, 9, 7, 4, 1, 5, 4, 5, 2, 8, 4, 4, 6, 6, 2, 0, 4, 6, 5, 0, 4, 1, 1, 9, 3, 1, 6, 9, 8, 8, 7, 2, 8, 2, 0, 1
Offset: 2

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

Lim_{n -> infinity} b(n)/b(n-1) = 17+12*sqrt(2) for b = A156160, A156161, A156162, A278310.
Conjecturally, the fractional part 0.97056 27484 ... of this constant equals ( (1 + 2 * Sum_{n >= 1} (-1)^n*exp(-2*Pi*n^2))/(1 + 2 * Sum_{n >= 1} exp(-2*Pi*n^2)) )^4. The series are rapidly converging. For example, summing both series from n = 1 to n = 2 approximates the fractional part of the constant as ( (1 - 2*exp(-2*Pi) + 2*exp(-8*Pi))/(1 + 2*exp(-2*Pi) + 2*exp(-8*Pi)) )^4 = 0.97056 27484 77140 58562 026(89) ..., correct to 23 decimal places. - Peter Bala, Jun 05 2019

Examples

			17 + 12*sqrt(2) = 33.97056274847714058562026469051637694283606250452337687...
		

Crossrefs

Cf. A002193: decimal expansion of sqrt(2); A156035: decimal expansion of 3+2*sqrt(2); A156163: decimal expansion of (19+6*sqrt(2))/17.

Programs

Formula

17+12*sqrt(2) = (3+2*sqrt(2))^2 = (1+sqrt(2))^4. - Klaus Brockhaus, Feb 14 2009. (corrected by Bruno Berselli, Feb 19 2013)

A156159 Squares of the form k^2+(k+17)^2 with integer k.

Original entry on oeis.org

169, 289, 625, 2809, 7225, 18769, 93025, 243049, 635209, 3157729, 8254129, 21576025, 107267449, 280395025, 732947329, 3643933225, 9525174409, 24898630849, 123786459889, 323575532569, 845820499225, 4205095700689
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

Square roots of k^2+(k+17)^2 are in A155923, values k (except for -5) are in A118120.

Examples

			625 = 25^2 is of the form k^2+(k+17)^2 with k = 7: 7^2+24^2 = 625. Hence 625 is in the sequence.
		

Crossrefs

Equals A155923^2. Cf. A156160 (first trisection), A156161 (second trisection), A156162 (third trisection).
Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,34,-34,0,-1,1},{169,289,625,2809,7225,18769,93025},30] (* Harvey P. Dale, Apr 22 2022 *)
  • PARI
    {forstep(n=-5, 1600000, [1, 3], if(issquare(a=2*n*(n+17)+289), print1(a, ",")))}

Formula

a(n) = 34*a(n-3)-a(n-6)-2312 for n > 6; a(1)=169, a(2)=289, a(3)=625, a(4)=2809, a(5)=7225, a(6)=18769.
G.f.: x*(169+120*x+336*x^2-3562*x^3+336*x^4+120*x^5+169*x^6)/((1-x)*(1-34*x^3+x^6)).
Limit_{n -> oo} a(n)/a(n-3) = (17+12*sqrt(2)).
Limit_{n -> oo} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = ((387+182*sqrt(2))/17^2)^2 for n mod 3 = 1.

Extensions

G.f. corrected, fourth comment and cross-references edited by Klaus Brockhaus, Sep 23 2009
Showing 1-2 of 2 results.