cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A156192 Denominator of Euler(n, 1/7).

Original entry on oeis.org

1, 14, 49, 1372, 2401, 33614, 117649, 6588344, 5764801, 80707214, 282475249, 7909306972, 13841287201, 193778020814, 678223072849, 75960984159088, 33232930569601, 465261027974414, 1628413597910449, 45595580741492572
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2009

Keywords

Crossrefs

For numerators see A156191.

A273031 Expansion of e.g.f.: (sin(x) + sin(6*x)) / sin(7*x), even-indexed terms only.

Original entry on oeis.org

1, 6, 330, 48726, 13534410, 6046913046, 3962771924490, 3580686141374166, 4266519857080266570, 6481738795978992136086, 12228451239686387772736650, 28048508112504152087554462806, 76867928701091608252297826870730, 248058932215537567368765344245378326, 931049990613171839116868739409352364810, 4021504762182514582910341826029900914866646
Offset: 0

Views

Author

Paul D. Hanna, May 13 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + 6*x^2/2! + 330*x^4/4! + 48726*x^6/6! + 13534410*x^8/8! + 6046913046*x^10/10! + 3962771924490*x^12/12! + 3580686141374166*x^14/14! +...
such that A(x) = (sin(x) + sin(6*x)) / sin(7*x).
O.g.f.: F(x) = 1 + 6*x + 330*x^2 + 48726*x^3 + 13534410*x^4 + 6046913046*x^5 + 3962771924490*x^6 + 3580686141374166*x^7 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 1*6*x/(1 - 7^2*x/(1 - 8*13*x/(1 - 14^2*x/(1 - 15*20*x/(1 - 21^2*x/(1 - 22*27*x/(1 - 28^2*x/(1 - 29*34*x/(1 - 35^2*x/(1 - 36*41*x/(1 - ...)))))))))))).
		

Crossrefs

Programs

  • Maple
    seq((-49)^n*euler(2*n, 1/7), n = 0..15); # Peter Luschny, Nov 26 2020
  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[(Sin[x]+Sin[6x])/Sin[7x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Jul 08 2018 *)
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(1*X) + sin(6*X))/sin(7*X), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(1*X) + cos(6*X))/(1 + cos(7*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(1*I*X) + exp(6*I*X))/(1 + exp(7*I*X)), 2*n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: cos(5*x/2) / cos(7*x/2).
E.g.f.: (cos(x) + cos(6*x)) / (1 + cos(7*x)).
E.g.f.: (exp(i*x) + exp(6*i*x)) / (1 + exp(7*i*x)), where i^2 = -1.
E.g.f.: exp(i*x)/(1 + exp(7*i*x)) + exp(-i*x)/(1 + exp(-7*i*x)), where i^2 = -1.
O.g.f.: 1/(1 - 1*6*x/(1 - 7^2*x/(1 - 8*13*x/(1 - 14^2*x/(1 - ... - (7*n+1)*(7*n+6)*x/(1 - (7*n+7)^2*x/(1 - ...))))))), a continued fraction.
a(n) ~ (2*n)! * 4*cos(5*Pi/14) * 7^(2*n) / Pi^(2*n+1). - Vaclav Kotesovec, May 14 2016
a(n) = (-49)^n*Euler(2*n, 1/7). - Peter Luschny, Nov 26 2020

A339058 a(n) = 4^n*Euler(n, 1/4)*2^(valuation_{2}(n + 1)).

Original entry on oeis.org

1, -2, -3, 44, 57, -722, -2763, 196888, 250737, -5746082, -36581523, 2049374444, 7828053417, -259141449842, -2309644635483, 705775346640176, 898621108880097, -38901437271432002, -445777636063460643, 43136210244502819244, 274613643571568682777, -14685255919931552812562
Offset: 0

Views

Author

Peter Luschny, Nov 27 2020

Keywords

Examples

			The array of the general case starts:
[k]
[1] 1,  1,  0, -1,   0,     1,     0,     -17,       0, ... [A198631]
[2] 1,  0, -1,  0,   5,     0,   -61,       0,    1385, ... [A122045]
[3] 1, -1, -2, 13,  22,  -121,  -602,   18581,   30742, ... [A156179]
[4] 1, -2, -3, 44,  57,  -722, -2763,  196888,  250737, ... [this sequence]
[5] 1, -3, -4, 99, 116, -2523, -8764, 1074243, 1242356, ... [A156182]
...
		

Crossrefs

Note the difference from A001586, A188458, and A212435.

Programs

  • Maple
    a := n -> 4^n*euler(n, 1/4)*2^padic[ordp](n+1, 2): seq(a(n), n=0..9);
  • Mathematica
    Array[4^#*EulerE[#, 1/4]*2^IntegerExponent[# + 1, 2] &, 22, 0] (* Michael De Vlieger, Mar 15 2022 *)
  • SageMath
    def euler_sum(n):
        return (-1)^n*sum(2^k*binomial(n, k)*euler_number(k) for k in (0..n))
    def a(n): return euler_sum(n) << valuation(n + 1, 2)
    print([a(n) for n in range(22)])
Showing 1-3 of 3 results.