cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156204 First primes of an arithmetic progression of six primes with common difference 30.

Original entry on oeis.org

7, 107, 359, 541, 2221, 6673, 7457, 10103, 25643, 26861, 27337, 35051, 56149, 61553, 65557, 73523, 84317, 110819, 115733, 131581, 135151, 137447, 179321, 228587, 243553, 252163, 279421, 281717, 310711, 320119, 337367, 345487, 347167, 357079
Offset: 1

Views

Author

Ki Punches, Feb 05 2009

Keywords

Comments

Subsequence of A155760. - R. J. Mathar, Feb 07 2009
After the first term, all terms are congruent to 9 (mod 14). Gaps of 14 occur at a(n) = 22037759, 400852853, ... - Zak Seidov, Aug 01 2013
Subsequence of A227281. - Zak Seidov, Aug 26 2014
Note that a(n)+6*30 is composite for all n: a(1)+180 is divisible by 11 and for n>1 a(n)+180 is divisible by 7. - Zak Seidov, Apr 11 2015

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(360000)| IsPrime(p+30) and IsPrime(p+60) and IsPrime(p+90)and IsPrime(p+120)and IsPrime(p+150)]; // Vincenzo Librandi, Apr 13 2015
  • Maple
    for n from 1 to 60000 do p := ithprime(n) ; if isprime(p+30) and isprime(p+60) and isprime(p+90) and isprime(p+120) and isprime(p+150) then printf("%d,",p) ; fi; od: # R. J. Mathar, Feb 07 2009
  • Mathematica
    Select[Range[360000], PrimeQ[#] && PrimeQ[# + 30] && PrimeQ[# + 60] && PrimeQ[# + 90] && PrimeQ[# + 120] && PrimeQ[# + 150] &] (* Vincenzo Librandi, Apr 13 2015 *)
  • PARI
    is_A156204(n) = isprime(n) && isprime(n+30) && isprime(n+60) && isprime(n+90) && isprime(n+120) && isprime(n+150) \\ Michael B. Porter, Aug 01 2013
    

Extensions

Corrected and extended by R. J. Mathar and Ray Chandler, Feb 08 2009