A156220 Triangle T(n, k) = (2^k/3)*Q(k, n), with T(0, 0) = -2, where Q(k, n) = (1/2)*( -Q(k-1, n) + 3*p(2, k-1)^n), and p(q, n) = Product_{j=1..n} ( (1-x^k)/(1-x) ), read by rows.
-2, -2, 3, -2, 3, -1, -2, 3, -1, 109, -2, 3, -1, 325, 1555523, -2, 3, -1, 973, 32671835, 49621794478165, -2, 3, -1, 2917, 686126051, 15630874866123949, 27744919164118690798376051, -2, 3, -1, 8749, 14408699579, 4923725784550050421, 270929135785330782929292449579, 2134369240927848351630724472718209102550421
Offset: 0
Examples
Triangle begins as: -2; -2, 3; -2, 3, -1; -2, 3, -1, 109; -2, 3, -1, 325, 1555523; -2, 3, -1, 973, 32671835, 49621794478165; -2, 3, -1, 2917, 686126051, 15630874866123949, 27744919164118690798376051;
Links
- G. C. Greubel, Rows n = 0..25 of the triangle, flattened
- L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. Volume 15, Number 4 (1948), 987-1000.
Crossrefs
Cf. A156222.
Programs
-
Mathematica
Q[x_, n_]:= Q[x, n]= If[n==0, 1, If[x==0, -6, (1/2)*(-Q[x-1, n] + 3*((-1)^(k-1)*QPochhammer[2, 2, x-1])^n)]]; T[n_, k_]:= If[n==0, -2, (2^k/3)*Q[k, n]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Dec 31 2021 *)
-
Sage
from sage.combinat.q_analogues import q_pochhammer @CachedFunction def Q(k,n): if (n==0): return 1 elif (k==0): return -6 else: return (1/2)*( -Q(k-1,n) + 3*(-1)^(n*(k-1))*(q_pochhammer(k-1,2,2))^n) def T(n,k): return -2 if (n==0) else (2^k/3)*Q(k,n) flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 31 2021
Formula
T(n, k) = (2^k/3)*Q(k, n), with T(0, 0) = -2, where Q(k, n) = (1/2)*( -Q(k-1, n) + 3*p(2, k-1)^n), and p(q, n) = Product_{j=1..n} ( (1-q^k)/(1-q) ).
Extensions
Edited by G. C. Greubel, Dec 31 2021
Comments