A156224 Triangle T(n, k) = binomial(n, k)*(A000009(n) + A000009(n-k) + A000009(k)) - 2, read by rows.
1, 1, 1, 1, 4, 1, 3, 10, 10, 3, 3, 18, 22, 18, 3, 5, 28, 58, 58, 28, 5, 7, 46, 103, 158, 103, 46, 7, 9, 68, 187, 313, 313, 187, 68, 9, 11, 94, 306, 614, 698, 614, 306, 94, 11, 15, 133, 502, 1174, 1636, 1636, 1174, 502, 133, 15, 19, 188, 763, 2038, 3358, 4030, 3358, 2038, 763, 188, 19
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 4, 1; 3, 10, 10, 3; 3, 18, 22, 18, 3; 5, 28, 58, 58, 28, 5; 7, 46, 103, 158, 103, 46, 7; 9, 68, 187, 313, 313, 187, 68, 9; 11, 94, 306, 614, 698, 614, 306, 94, 11; 15, 133, 502, 1174, 1636, 1636, 1174, 502, 133, 15; 19, 188, 763, 2038, 3358, 4030, 3358, 2038, 763, 188, 19;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A000009.
Programs
-
Mathematica
T[n_, k_]:= Binomial[n, k]*(PartitionsQ[n] +PartitionsQ[n-k] +PartitionsQ[k]) -2; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
-
Sage
# Uses Peter Luschny's program for A000009 def EulerTransform(a): @cached_function def b(n): if n == 0: return 1 s = sum(sum(d * a(d) for d in divisors(j)) * b(n-j) for j in (1..n)) return s//n return b a = BinaryRecurrenceSequence(0, 1) P = EulerTransform(a) def T(n,k): return binomial(n,k)*(P(n) + P(n-k) + P(k)) - 2 flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Dec 31 2021
Extensions
Edited by G. C. Greubel, Dec 31 2021