A156736
Signed greedy Egyptian fraction for Pi/2.
Original entry on oeis.org
1, 2, 14, -1582, -7497258, 303297921775458, -2646995089135122277190614296178, 82888930564911423983289917045230098319343306166666586941750246
Offset: 0
1+1/2+1/14=11/7=(1/2)(22/7)
1+1/2+1/14-1/1582=355/226=(1/2)(355/113)
-
x=Pi/2; for (k=0,7, d=round(1/x); x=x-1/d; print1(d,", "))
A156750
Greedy Egyptian fraction for Pi/2.
Original entry on oeis.org
1, 2, 15, 243, 69282, 36600664305, 6435072487994269232829, 364103502021384610224777078613738432189483892
Offset: 0
-
x=Pi/2; for (k=0, 7, d=ceil(1/x); x=x-1/d; print(d,", "))
A164916
Denominators of a BBP series for Pi/4.
Original entry on oeis.org
1, -8, -20, -24, 144, -384, -832, -896, 4352, -10240, -21504, -22528, 102400, -229376, -475136, -491520, 2162688, -4718592, -9699328, -9961472, 42991616, -92274688, -188743680, -192937984, 822083584, -1744830464, -3556769792
Offset: 0
-
CoefficientList[Series[(1 - 8*x - 20*x^2 - 24*x^3 + 112*x^4 - 128*x^5 - 192*x^6 - 128*x^7)/(1 - 16*x^4)^2, {x,0,50}], x] (* G. C. Greubel, Feb 25 2017 *)
-
x='x + O('x^50); Vec((1 - 8*x - 20*x^2 - 24*x^3 + 112*x^4 - 128*x^5 - 192*x^6 - 128*x^7)/(1 - 16*x^4)^2) \\ G. C. Greubel, Feb 25 2017
Showing 1-3 of 3 results.
Comments