A156279 4 times the Lucas number A000032(n).
8, 4, 12, 16, 28, 44, 72, 116, 188, 304, 492, 796, 1288, 2084, 3372, 5456, 8828, 14284, 23112, 37396, 60508, 97904, 158412, 256316, 414728, 671044, 1085772, 1756816, 2842588, 4599404, 7441992
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Autosequence
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
[4*Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 21 2017
-
Mathematica
Table[4*LucasL[n], {n,0,30}] (* G. C. Greubel, Dec 21 2017 *)
-
PARI
a(n)=4*(fibonacci(n-1)+fibonacci(n+1)) \\ Charles R Greathouse IV, Oct 16 2015
Formula
a(n) = 4*A000032(n).
a(n) = a(n-1) + a(n-2).
a(n) = A014217(n+3) - A014217(n-3), with A014217(-5) = -11, A014217(-4) = 6, A014217(-3) = -4, A014217(-2) = 2, A014217(-1) = -1 extended as proposed in A153263.
G.f. 4*(-2 + x) / (-1 + x + x^2). - R. J. Mathar, Mar 11 2011
a(n) = Lucas(n+3) - Lucas(n-3), where Lucas(i) for i = 0..2 gives -4, 3, -1. - Bruno Berselli, Jul 27 2017
Comments