A156291 A triangle sequence of Cyclotomic products: t(n,m)=Product[Cyclotomic[k, m + 1], {k, 1, n}].
1, 3, 8, 21, 104, 315, 105, 1040, 5355, 19344, 3255, 125840, 1826055, 15107664, 86590175, 9765, 880880, 23738715, 317260944, 2684295425, 16476602400, 1240155, 962801840, 129637122615, 6196423497264, 150285647959475, 2261529015616800, 23895819265962735
Offset: 1
Examples
{1}, {3, 8}, {21, 104, 315}, {105, 1040, 5355, 19344}, {3255, 125840, 1826055, 15107664, 86590175}, {9765, 880880, 23738715, 317260944, 2684295425, 16476602400}, {1240155, 962801840, 129637122615, 6196423497264, 150285647959475, 2261529015616800, 23895819265962735},
Crossrefs
Cf. A156173.
Programs
-
Mathematica
Clear[t, n, m, i, k]; t[n_, m_] = Product[Cyclotomic[k, m + 1], {k, 1, n}]; Table[Table[t[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[%]
-
PARI
T(n,m) = prod(k=1, n, polcyclo(k, m+1)); \\ Michel Marcus, Feb 08 2023
Formula
T(n,m) = Product_{k=1..n} Cyclotomic(k, m + 1).
Comments