cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156291 A triangle sequence of Cyclotomic products: t(n,m)=Product[Cyclotomic[k, m + 1], {k, 1, n}].

Original entry on oeis.org

1, 3, 8, 21, 104, 315, 105, 1040, 5355, 19344, 3255, 125840, 1826055, 15107664, 86590175, 9765, 880880, 23738715, 317260944, 2684295425, 16476602400, 1240155, 962801840, 129637122615, 6196423497264, 150285647959475, 2261529015616800, 23895819265962735
Offset: 1

Views

Author

Roger L. Bagula, Feb 07 2009

Keywords

Comments

Row sums are: {1, 11, 440, 25844, 103652989, 19502788129, 26313960954200884, 1365438215011770727764, 13180641383420867649481463463, 2480700284650078006965956163001113,...}.

Examples

			{1},
{3, 8},
{21, 104, 315},
{105, 1040, 5355, 19344},
{3255, 125840, 1826055, 15107664, 86590175},
{9765, 880880, 23738715, 317260944, 2684295425, 16476602400},
{1240155, 962801840, 129637122615, 6196423497264, 150285647959475, 2261529015616800, 23895819265962735},
		

Crossrefs

Cf. A156173.

Programs

  • Mathematica
    Clear[t, n, m, i, k];
    t[n_, m_] = Product[Cyclotomic[k, m + 1], {k, 1, n}];
    Table[Table[t[n, m], {m, 1, n}], {n, 1, 10}];
    Flatten[%]
  • PARI
    T(n,m) = prod(k=1, n, polcyclo(k, m+1)); \\ Michel Marcus, Feb 08 2023

Formula

T(n,m) = Product_{k=1..n} Cyclotomic(k, m + 1).