A156301 a(n) = ceiling( n * log_3(2) ) = ceiling(n * 0.6309297535714574371...).
0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 47
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Li an-Ping, A note on the counterfeit coins problem, arXiv:0902.0841 [math.CO], 2009-2010.
- A. Gorman-Huang and E. Marks, Approximating Powers of 2 Using Powers of 3 and Break Point Rounding, Girls' Angle Bulletin, Vol. 18, No. 5 (2025), 8-10.
Crossrefs
Cf. A136409.
Programs
-
Haskell
a156301 = ceiling . (* logBase 3 2) . fromIntegral -- Reinhard Zumkeller, Jul 03 2015
-
Maple
seq(ceil(n*log[3](2)),n=0..120) ; # R. J. Mathar, Mar 14 2009
-
Mathematica
With[{c=Log[3,2]},Ceiling[c*Range[0,80]]] (* Harvey P. Dale, Aug 07 2015 *)
-
Python
from operator import sub from sympy import integer_log def A156301(n): return sub(*integer_log(1<
Chai Wah Wu, Oct 09 2024
Extensions
More terms from R. J. Mathar, Mar 14 2009
Edited by N. J. A. Sloane, May 23 2009 at the suggestion of Hagen von Eitzen
Comments