A156348 Triangle T(n,k) read by rows. Column of Pascal's triangle interleaved with k-1 zeros.
1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 3, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 4, 0, 4, 0, 0, 0, 1, 1, 0, 6, 0, 0, 0, 0, 0, 1, 1, 5, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 10, 10, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Table begins: 1 1 1 1 0 1 1 2 0 1 1 0 0 0 1 1 3 3 0 0 1 1 0 0 0 0 0 1 1 4 0 4 0 0 0 1 1 0 6 0 0 0 0 0 1 1 5 0 0 5 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 6 10 10 0 6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 7 0 0 0 0 7 0 0 0 0 0 0 1 1 0 15 0 15 0 0 0 0 0 0 0 0 0 1 1 8 0 20 0 0 0 8 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 9 21 0 0 21 0 0 9 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 10 0 35 35 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- el Houcein el Abdalaoui, Mohamed Dahmoune and Djelloul Ziadi, On the transition reduction problem for finite automata, arXiv preprint arXiv:1301.3751 [cs.FL], 2013. - From _N. J. A. Sloane_, Feb 12 2013
- Jeff Ventrella, Divisor Plot
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
Following Mathar's Maple program. a156348 n k = a156348_tabl !! (n-1) !! (k-1) a156348_tabl = map a156348_row [1..] a156348_row n = map (f n) [1..n] where f n k = if r == 0 then a007318 (n' - 2 + k) (k - 1) else 0 where (n', r) = divMod n k -- Reinhard Zumkeller, Jan 31 2014
-
Maple
A156348 := proc(n,k) if k < 1 or k > n then return 0 ; elif n mod k = 0 then binomial(n/k-2+k,k-1) ; else 0 ; end if; end proc: # R. J. Mathar, Mar 03 2013
-
Mathematica
T[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)
Comments