cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156365 T(n, k) = E(n, k)*2^k where E(n,k) are the Eulerian numbers A173018, for n > 0 and 0 <= k <= n-1, additionally T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 8, 4, 1, 22, 44, 8, 1, 52, 264, 208, 16, 1, 114, 1208, 2416, 912, 32, 1, 240, 4764, 19328, 19056, 3840, 64, 1, 494, 17172, 124952, 249904, 137376, 15808, 128, 1, 1004, 58432, 705872, 2499040, 2823488, 934912, 64256, 256, 1, 2026, 191360
Offset: 0

Views

Author

Roger L. Bagula, Feb 08 2009

Keywords

Comments

Row sums are the Fubini numbers A000670.
Except for the first term same as A142075. - R. J. Mathar, Feb 19 2009
By the definition of the Eulerian numbers it would be natural to add a 0 at the end of the rows if n > 0. - Peter Luschny, Sep 19 2015

Examples

			Triangle begins:
  1;
  1;
  1,    2;
  1,    8,      4;
  1,   22,     44,       8;
  1,   52,    264,     208,       16;
  1,  114,   1208,    2416,      912,       32;
  1,  240,   4764,   19328,    19056,     3840,       64;
  1,  494,  17172,  124952,   249904,   137376,    15808,     128;
  1, 1004,  58432,  705872,  2499040,  2823488,   934912,   64256,    256;
  1, 2026, 191360, 3641536, 20965664, 41931328, 29132288, 6123520, 259328, 512;
		

Crossrefs

Programs

  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;
    A156365:= func< n,k | 2^k*Eulerian(n,k) >;
    [1] cat [A156365(n,k): k in [0..n-1], n in [0..12]]; // G. C. Greubel, Jun 05 2021
    
  • Maple
    A156365 := (n,k) -> combinat:-eulerian1(n,k)*2^k:
    for n from 0 to 15 do seq(A156365(n,k), k=0..n) od; # Peter Luschny, Sep 19 2015
  • Mathematica
    (* First program *)
    p[x_, n_]= (1-2*x)^(n+1)*PolyLog[-n, 2*x]/(2*x);
    Table[CoefficientList[p[x, n], x], {n, 0, 10}]
    (* Second program: *)
    E1[n_ /; n >= 0, 0] = 1; E1[n_, k_] /; k<0 || k>n = 0; E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
    T[0, 0] = 1; T[n_, k_]:= E1[n, k]*2^k;
    Table[T[n, k], {n, 0, 10}, {k, 0, Max[0, n-1]}]//Flatten (* Jean-François Alcover, Dec 30 2018, after Peter Luschny *)
  • Sage
    @CachedFunction
    def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
    def T(n,k): return 2^k*Eulerian(n,k)
    [1]+flatten([[T(n,k) for k in (0..n-1)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021

Formula

Let p(x,n) = (1 - 2*x)^(n + 1) * Sum_{k>=0} 2^k*(k+1)^n*x^k = (1-2*x)^(1 + n)* polylogarithm(-n, 2*x)/(2*x) then T(n,m) are the coefficients of p(x,n).
G.f.: 1/Q(0), where Q(k) = 1 + x*(k+1)/( 1 - y*2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 17 2013

Extensions

Edited and new name by Peter Luschny, Sep 19 2015