A156581 Triangle T(n, k, m) = (m+2)^(k*(n-k)) with m = 15, read by rows.
1, 1, 1, 1, 17, 1, 1, 289, 289, 1, 1, 4913, 83521, 4913, 1, 1, 83521, 24137569, 24137569, 83521, 1, 1, 1419857, 6975757441, 118587876497, 6975757441, 1419857, 1, 1, 24137569, 2015993900449, 582622237229761, 582622237229761, 2015993900449, 24137569, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 17, 1; 1, 289, 289, 1; 1, 4913, 83521, 4913, 1; 1, 83521, 24137569, 24137569, 83521, 1; 1, 1419857, 6975757441, 118587876497, 6975757441, 1419857, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A156581:= func< n,k,m | (m+2)^(k*(n-k)) >; [A156581(n,k,15): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
Mathematica
(* First program *) b[n_, k_]:= b[n, k]= If[k==0, n!, Product[Sum[Binomial[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, n}]]; T[n_, k_, m_]:= T[n, k, m]= b[n, m]/(b[k, m]*b[n-k, m]); Table[T[n, k, 15], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 28 2021 *) (* Second program *) T[n_, k_, m_]:= (m+2)^(k*(n-k)); Table[T[n,k,15], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
Sage
def A156581(n,k,m): return (m+2)^(k*(n-k)) flatten([[A156581(n,k,15) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
Formula
T(n, k, m) = b(n, m)/(b(k, m)*b(n-k, m)) with b(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} binomial(j-1, i)*(k+1)^i ), b(n, 0) = n!, and m = 15.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 15. - G. C. Greubel, Jun 28 2021
Extensions
Edited by G. C. Greubel, Jun 28 2021