A156584 Triangle T(n,k) = SF(n+1)/(SF(n-k+1)*SF(k+1)) where SF(n) is the superfactorial A000178(n), read by rows.
1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 60, 240, 60, 1, 1, 360, 7200, 7200, 360, 1, 1, 2520, 302400, 1512000, 302400, 2520, 1, 1, 20160, 16934400, 508032000, 508032000, 16934400, 20160, 1, 1, 181440, 1219276800, 256048128000, 1536288768000, 256048128000, 1219276800, 181440, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 3, 1; 1, 12, 12, 1; 1, 60, 240, 60, 1; 1, 360, 7200, 7200, 360, 1; 1, 2520, 302400, 1512000, 302400, 2520, 1; 1, 20160, 16934400, 508032000, 508032000, 16934400, 20160, 1;
Links
- G. C. Greubel, Rows n = 0..30 of the triangle, flattened
Programs
-
Maple
SF := n -> mul(j!, j=0..n): T := (n,k) -> SF(n-1)/(SF(n-k)*SF(k)): seq(print(seq(T(n,k),k=1..n-1)),n=0..9); # Peter Luschny, Jan 24 2015
-
Mathematica
(* First program *) b[n_, k_]:= If[k==0, n!, Product[Sum[(-1)^(i+j)*(j+1)*StirlingS1[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, 1, n}]]; T[n_, k_, m_] = If[n==0, 1, b[n, m]/(b[k, m]*b[n-k, m])]; Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 20 2021 *) (* Second program *) f[n_, k_]:= If[k==0, n!, (-1)^n*(n+1)!*BarnesG[n+k+1]/(Gamma[k+1]^n*BarnesG[k+1])]; T[n_, k_, m_]:= If[n==0, 1, f[n,m]/(f[k,m]*f[n-k,m])]; Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 20 2021 *)
-
Sage
def f(n,k): return factorial(n) if (k==0) else (-1)^n*factorial(n+1)*product( rising_factorial(k+1, j) for j in (0..n-1) ) def T(n,k,m): return 1 if (n==0) else f(n,m)/(f(k,m)*f(n-k,m)) flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 21 2021
Formula
From G. C. Greubel, Jun 21 2021: (Start)
T(n, k) = BarnesG(n+3)/(BarnesG(k+3)*BarnesG(n-k+3)).
T(n, k, m) = f(n, m)/(f(k, m)*f(n-k, m)), with T(0, k, m) = 1, f(n, k) = (-1)^n*(n + 1)!*BarnesG(n+k+1)/(Gamma(k+1)^n*BarnesG(k+1)), f(n, 0) = n!, and m = 1. (End)
Extensions
New name and editing, Peter Luschny, Jan 24 2015