cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A156764 Triangle T(n, k, m) = b(n, m)/(b(k, m)*b(n-k, m)), with T(0, k, m) = 1, b(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} (-1)^(j+i)*(j+1)*(k+1)^i*StirlingS1(j-1, i) ), b(n, 0) = n!, and m = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 40, 40, 1, 1, 300, 2000, 300, 1, 1, 2520, 126000, 126000, 2520, 1, 1, 23520, 9878400, 74088000, 9878400, 23520, 1, 1, 241920, 948326400, 59744563200, 59744563200, 948326400, 241920, 1, 1, 2721600, 109734912000, 64524128256000, 542002677350400, 64524128256000, 109734912000, 2721600, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 15 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,      6,         1;
  1,     40,        40,           1;
  1,    300,      2000,         300,           1;
  1,   2520,    126000,      126000,        2520,         1;
  1,  23520,   9878400,    74088000,     9878400,     23520,      1;
  1, 241920, 948326400, 59744563200, 59744563200, 948326400, 241920, 1;
		

Crossrefs

Cf. A007318 (m=0), A156584 (m=1), this sequence (m=3).

Programs

  • Mathematica
    (* First program *)
    b[n_, k_]:= If[k==0, n!, Product[Sum[(-1)^(i+j)*(j+1)*StirlingS1[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, 1, n}]];
    T[n_, k_, m_] = If[n==0, 1, b[n, m]/(b[k, m]*b[n-k, m])];
    Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 20 2021 *)
    (* Second program *)
    f[n_, k_]:= If[k==0, n!, (-1)^n*(n+1)!*BarnesG[n+k+1]/(Gamma[k+1]^n*BarnesG[k+1])];
    T[n_, k_, m_]:= If[n==0, 1, f[n,m]/(f[k,m]*f[n-k,m])];
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 20 2021 *)
  • Sage
    def f(n,k): return factorial(n) if (k==0) else (-1)^n*factorial(n+1)*product( rising_factorial(k+1, j) for j in (0..n-1) )
    def T(n,k,m): return 1 if (n==0) else f(n,m)/(f(k,m)*f(n-k,m))
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 20 2021

Formula

T(n, k, m) = b(n, m)/(b(k, m)*b(n-k, m)), with T(0, k, m) = 1, b(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} (-1)^(j+i)*(j+1)*(k+1)^i*StirlingS1(j-1, i) ), b(n, 0) = n!, and m = 3.
T(n, k, m) = f(n, m)/(f(k, m)*f(n-k, m)), with T(0, k, m) = 1, f(n, k) = (-1)^n*(n + 1)!*BarnesG(n+k+1)/(Gamma(k+1)^n*BarnesG(k+1)), f(n, 0) = n!, and m = 3. - G. C. Greubel, Jun 20 2021

Extensions

Edited by G. C. Greubel, Jun 20 2021
Showing 1-1 of 1 results.