A156588 A triangle of q factorial type based on Stirling first polynomials: t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]].
1, 1, 1, 1, -1, 2, 1, -1, 2, 6, 1, -1, 3, -12, 24, 1, -1, 4, -36, 288, 120, 1, -1, 5, -80, 2160, -34560, 720, 1, -1, 6, -150, 9600, -777600, 24883200, 5040, 1, -1, 7, -252, 31500, -8064000, 1959552000, -125411328000, 40320, 1, -1, 8, -392, 84672, -52920000
Offset: 0
Examples
{1}, {1, 1}, {1, -1, 2}, {1, -1, 2, 6}, {1, -1, 3, -12, 24}, {1, -1, 4, -36, 288, 120}, {1, -1, 5, -80, 2160, -34560, 720}, {1, -1, 6, -150, 9600, -777600, 24883200, 5040}, {1, -1, 7, -252, 31500, -8064000, 1959552000, -125411328000, 40320}, {1, -1, 8, -392, 84672, -52920000, 54190080000, -39504568320000, 5056584744960000, 362880}, {1, -1, 9, -576, 197568, -256048128, 800150400000, -3277416038400000, 7167708875980800000, -1834933472251084800000, 3628800}
Crossrefs
Programs
-
Mathematica
Clear[t, n, m, i, k, a, b]; t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; a = Table[Table[t[n, m], {n, 0, 10}], {m, 0, 10}]; b = Table[Table[a[[m, n - m + 1]], {m, n, 1, -1}], {n, 1, Length[a]}]; Flatten[%]
Formula
t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
out_(n,k)=Antidiagonal(t(n,k)).
Comments