cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156588 A triangle of q factorial type based on Stirling first polynomials: t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]].

Original entry on oeis.org

1, 1, 1, 1, -1, 2, 1, -1, 2, 6, 1, -1, 3, -12, 24, 1, -1, 4, -36, 288, 120, 1, -1, 5, -80, 2160, -34560, 720, 1, -1, 6, -150, 9600, -777600, 24883200, 5040, 1, -1, 7, -252, 31500, -8064000, 1959552000, -125411328000, 40320, 1, -1, 8, -392, 84672, -52920000
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2009

Keywords

Comments

Row sums are:
{1, 2, 2, 8, 15, 376, -31755, 24120096, -123459768425, 5017134314247168,
-1827769039991244222327,...}.

Examples

			{1},
{1, 1},
{1, -1, 2},
{1, -1, 2, 6},
{1, -1, 3, -12, 24},
{1, -1, 4, -36, 288, 120},
{1, -1, 5, -80, 2160, -34560, 720},
{1, -1, 6, -150, 9600, -777600, 24883200, 5040},
{1, -1, 7, -252, 31500, -8064000, 1959552000, -125411328000, 40320},
{1, -1, 8, -392, 84672, -52920000, 54190080000, -39504568320000, 5056584744960000, 362880},
{1, -1, 9, -576, 197568, -256048128, 800150400000, -3277416038400000, 7167708875980800000, -1834933472251084800000, 3628800}
		

Crossrefs

Programs

  • Mathematica
    Clear[t, n, m, i, k, a, b];
    t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
    a = Table[Table[t[n, m], {n, 0, 10}], {m, 0, 10}];
    b = Table[Table[a[[m, n - m + 1]], {m, n, 1, -1}], {n, 1, Length[a]}];
    Flatten[%]

Formula

t(n,k)=If[m == 0, n!, Product[Sum[(-1)^(i + k)*StirlingS1[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
out_(n,k)=Antidiagonal(t(n,k)).