cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A157823 a(n) = A156591(n) + A156591(n+1).

Original entry on oeis.org

-5, -1, -2, -4, -8, -16, -32, -64, -128, -256, -512, -1024, -2048, -4096, -8192, -16384, -32768, -65536, -131072, -262144, -524288, -1048576, -2097152, -4194304, -8388608, -16777216, -33554432, -67108864, -134217728, -268435456, -536870912, -1073741824
Offset: 0

Views

Author

Paul Curtz, Mar 07 2009

Keywords

Comments

A156591 = 2,-7,6,-8,4,-12,... a(n) is companion to A154589 = 4,-1,-2,-4,-8,.For this kind ,companion of sequence b(n) is first differences a(n), second differences being b(n). Well known case: A131577 and A011782. a(n)+b(n)=A000079 or -A000079. a(n)=A154570(n+2)-A154570(n) ,A154570 = 1,3,-4,2,-6,-2,-14,. See sequence(s) identical to its p-th differences (A130785,A130781,A024495,A000749,A138112(linked to Fibonacci),A139761).

Programs

  • PARI
    Vec(-(9*x-5)/(2*x-1) + O(x^100)) \\ Colin Barker, Feb 03 2015

Formula

a(n) = 2*a(n-1) for n>1. G.f.: -(9*x-5) / (2*x-1). - Colin Barker, Feb 03 2015

Extensions

Edited by Charles R Greathouse IV, Oct 11 2009

A156605 a(n) = (4^n + 20)/3.

Original entry on oeis.org

7, 8, 12, 28, 92, 348, 1372, 5468, 21852, 87388, 349532, 1398108, 5592412, 22369628, 89478492, 357913948, 1431655772, 5726623068, 22906492252, 91625968988, 366503875932, 1466015503708, 5864062014812, 23456248059228, 93824992236892, 375299968947548
Offset: 0

Views

Author

Paul Curtz, Feb 11 2009

Keywords

Crossrefs

Programs

Formula

a(n) = -A156591(2n+1).
a(n) = 4 + A154879(2n) = 7 + A002450(n).
a(n) = 4*a(n-1) - 20, n > 0.
G.f.: (7 - 27*x)/((1-x)*(1-4*x)). - R. J. Mathar, Feb 23 2009
E.g.f.: (1/3)*(20*exp(x) + exp(4*x)). - G. C. Greubel, Jun 25 2021

Extensions

Edited and extended by R. J. Mathar, Feb 23 2009
Showing 1-2 of 2 results.