cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156619 Numbers congruent to {7, 18} mod 25.

Original entry on oeis.org

7, 18, 32, 43, 57, 68, 82, 93, 107, 118, 132, 143, 157, 168, 182, 193, 207, 218, 232, 243, 257, 268, 282, 293, 307, 318, 332, 343, 357, 368, 382, 393, 407, 418, 432, 443, 457, 468, 482, 493, 507, 518, 532, 543, 557, 568, 582, 593, 607, 618, 632, 643, 657, 668
Offset: 1

Views

Author

Vincenzo Librandi, Feb 11 2009

Keywords

Comments

Also, numbers k such that k^2 + 1 == 0 (mod 25).
Numbers of the form 25*k+7 or 25*k+18. Numbers b such that 25 is a base-b Euler pseudoprime. - Karsten Meyer, Jan 05 2011

Programs

  • Magma
    [n: n in [1..700] | n mod 25 in [7, 18]]; // Vincenzo Librandi, Apr 08 2013
  • Mathematica
    fQ[n_] := Mod[n^2 + 1, 25] == 0; Select[ Range@ 670, fQ]
    Flatten[#+{7,18}&/@(25*Range[0,30])] (* Harvey P. Dale, Jan 24 2013 *)
    Select[Range[1, 700], MemberQ[{7, 18}, Mod[#, 25]]&] (* Vincenzo Librandi, Apr 08 2013 *)

Formula

a(n) = 2*a(n-1)-a(n-2)-3, if n is even, and a(n) = 2*a(n-1)-a(n-2)+3, if n is odd, with a(1)=7, a(2)=18.
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = 25*n/2-25/4-3*(-1)^n/4.
G.f.: x*(7+11*x+7*x^2)/((1+x)*(1-x)^2). (End)
E.g.f.: 7 + ((50*x - 25)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 08 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(11*Pi/50)*Pi/25. - Amiram Eldar, Feb 26 2023