A156619 Numbers congruent to {7, 18} mod 25.
7, 18, 32, 43, 57, 68, 82, 93, 107, 118, 132, 143, 157, 168, 182, 193, 207, 218, 232, 243, 257, 268, 282, 293, 307, 318, 332, 343, 357, 368, 382, 393, 407, 418, 432, 443, 457, 468, 482, 493, 507, 518, 532, 543, 557, 568, 582, 593, 607, 618, 632, 643, 657, 668
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[n: n in [1..700] | n mod 25 in [7, 18]]; // Vincenzo Librandi, Apr 08 2013
-
Mathematica
fQ[n_] := Mod[n^2 + 1, 25] == 0; Select[ Range@ 670, fQ] Flatten[#+{7,18}&/@(25*Range[0,30])] (* Harvey P. Dale, Jan 24 2013 *) Select[Range[1, 700], MemberQ[{7, 18}, Mod[#, 25]]&] (* Vincenzo Librandi, Apr 08 2013 *)
Formula
a(n) = 2*a(n-1)-a(n-2)-3, if n is even, and a(n) = 2*a(n-1)-a(n-2)+3, if n is odd, with a(1)=7, a(2)=18.
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = 25*n/2-25/4-3*(-1)^n/4.
G.f.: x*(7+11*x+7*x^2)/((1+x)*(1-x)^2). (End)
E.g.f.: 7 + ((50*x - 25)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 08 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(11*Pi/50)*Pi/25. - Amiram Eldar, Feb 26 2023
Comments