A156641 a(n) = 13*(100^(n+1) - 1)/99.
13, 1313, 131313, 13131313, 1313131313, 131313131313, 13131313131313, 1313131313131313, 131313131313131313, 13131313131313131313, 1313131313131313131313, 131313131313131313131313
Offset: 0
Examples
For n=0, a(0)=13; n=1, a(1)=1313; n=2, a(2)=131313; n=3, a(3)=13131313.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (101,-100).
Programs
-
Magma
[13*(100^(n+1)-1)/99: n in [0..15]];
-
Maple
A156641:= n-> (13/99)*(10^(2*n+2) -1); seq(A156641(n), n=0..15); # G. C. Greubel, Feb 28 2021
-
Mathematica
Table[FromDigits[PadLeft[{1,3},2n,{1,3}]],{n,15}] (* Harvey P. Dale, Jul 23 2011 *)
-
PARI
a(n) = 100^(n+1)\99*13; \\ Kevin Ryde, Mar 05 2022
-
Sage
[(13/99)*(10^(2*n+2) -1) for n in (0..15)] # G. C. Greubel, Feb 28 2021
Formula
G.f.: 13*x / ( (1-100*x)*(1-x) ).
a(n) = 13*A094028(n-1).
E.g.f.: (13/99)*(-exp(x) + 100*exp(100*x)). - G. C. Greubel, Feb 28 2021
Extensions
Offset changed from 1 to 0