cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156664 Binomial transform of A052551.

Original entry on oeis.org

1, 2, 6, 16, 42, 108, 274, 688, 1714, 4244, 10458, 25672, 62826, 153372, 373666, 908896, 2207842, 5357348, 12988074, 31464568, 76179354, 184347564, 445923058, 1078290832, 2606699026, 6300077492, 15223631226, 36780894376, 88852528842, 214620169788
Offset: 0

Views

Author

Gary W. Adamson, Feb 12 2009

Keywords

Examples

			a(3) = 16 = (1, 3, 3, 1) dot (1, 1, 3, 3) = (1 + 3 + 9 + 3).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^2-2x+1)/(2x^3+3x^2-4x+1),{x,0,40}],x] (* or *) LinearRecurrence[{4,-3,-2},{1,2,6},40] (* Harvey P. Dale, Apr 20 2013 *)
  • PARI
    x='x+O('x^50); Vec((x^2-2*x+1)/(2*x^3+3*x^2-4*x+1)) \\ G. C. Greubel, Feb 24 2017

Formula

A007318 * A052551, where A052551 = (1, 1, 3, 3, 7, 7, 15, 15,...).
G.f.: (x^2 - 2*x + 1)/(2*x^3 + 3*x^2 - 4*x + 1). [Alexander R. Povolotsky, Feb 15 2009]
a(n) = 2*A000129(n+1)-2^n. [R. J. Mathar, Jun 15 2009]
a(n) = -2^n + (1-1/sqrt(2))*(1-sqrt(2))^n + (1+1/sqrt(2))*(1+sqrt(2))^n. - Alexander R. Povolotsky, Aug 16 2012
a(n+3) = -2*a(n) - 3*a(n+1) + 4*a(n+2). - Alexander R. Povolotsky, Aug 16 2012

Extensions

Corrected and extended by Harvey P. Dale, Apr 20 2013