cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156679 Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, gcd (A, B) = 1, A < BA020884(n)).

Original entry on oeis.org

5, 13, 25, 17, 41, 61, 37, 85, 113, 65, 145, 181, 29, 101, 221, 265, 145, 313, 365, 53, 197, 421, 481, 257, 65, 545, 613, 85, 325, 685, 89, 761, 401, 841, 925, 125, 485, 1013, 1105, 73, 577, 1201, 149, 1301, 173, 677, 1405, 1513, 785, 185, 1625, 1741, 109, 229
Offset: 1

Views

Author

Ant King, Feb 15 2009

Keywords

Comments

The ordered sequence of A values is A020884(n) and the ordered sequence of C values is A020882(n) (allowing repetitions) and A008846(n) (excluding repetitions).

Examples

			As the first four primitive Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (7,24,25) and (8,15,17), then a(1)=5, a(2)=13, a(3)=25 and a(4)=17.
		

References

  • Beiler, Albert H.: Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134.
  • Sierpinski, W.; Pythagorean Triangles, Dover Publications, Inc., Mineola, New York, 2003.

Crossrefs

Programs

  • Haskell
    a156679 n = a156679_list !! (n-1)
    a156679_list = f 1 1 where
       f u v | v > uu `div` 2        = f (u + 1) (u + 2)
             | gcd u v > 1 || w == 0 = f u (v + 2)
             | otherwise             = w : f u (v + 2)
             where uu = u ^ 2; w = a037213 (uu + v ^ 2)
    -- Reinhard Zumkeller, Nov 09 2012
  • Mathematica
    PrimitivePythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[iHarvey P. Dale, May 10 2020 *)