cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156733 Euler transform of n*A065958(n).

Original entry on oeis.org

1, 1, 11, 41, 176, 606, 2391, 8091, 28636, 95056, 316048, 1014240, 3237325, 10082015, 31109500, 94352346, 283209381, 838650191, 2458835711, 7127912979, 20471486368, 58224189612, 164181018330, 458982667630, 1273039111210, 3503609456548, 9572771822745, 25971150308985
Offset: 0

Views

Author

Paul D. Hanna and Vladeta Jovovic, Feb 14 2009

Keywords

Comments

Compare to the g.f. of planar partitions (A000219): exp( Sum_{n>=1} sigma(n,2)*x^n/n ) = Product_{n>=1} 1/(1-x^n)^n.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*numtheory[sigma][2](j^2), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 24 2016
  • Mathematica
    a[0] = 1;
    a[n_] := a[n] = (1/n) Sum[DivisorSigma[2, k^2] a[n-k], {k, 1, n}];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 03 2020 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(m^2,2)*x^m/m)+x*O(x^n)),n)}
    for(n=0,21,print1(a(n),", "))

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_2(k^2)*a(n-k) for n>0, with a(0) = 1.
G.f.: exp( Sum_{n>=1} A065827(n)*x^n/n ), where A065827(n) = sigma_2(n^2) is the sum of squares of the divisors of n^2. - Paul D. Hanna, Aug 09 2012