Original entry on oeis.org
1, 2, 192, 14632, 5451140, 2216555772, 2201283594512, 2563699840815752, 5239330894956743702, 12738172416005805235262, 45354957806572334315266802, 190794310975336315988205573422, 1056059186013450690759502943569093, 6805676661977149073551721890947184830
Offset: 0
-
A156741[n_, k_]:= Round[Product[Binomial[2*(n+j), 2*(k+j)]/Binomial[2*(n-k+j), 2*j], {j, 0, 8}]];
A151709[n_]:= A151709[n]= Sum[A156741[n, k], {k,0,n}];
Table[A151709[n], {n, 0, 30}] (* G. C. Greubel, Jun 19 2021 *)
-
def A156741(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..8)) )
def A151709(n): return sum( A156741(n, k) for k in (0..n) )
[A151709(n) for n in (0..30)] # G. C. Greubel, Jun 19 2021
A156740
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 7, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 153, 1, 1, 4845, 4845, 1, 1, 74613, 2362745, 74613, 1, 1, 735471, 358664691, 358664691, 735471, 1, 1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1, 1, 30421755, 1056158828725, 160324910200455, 160324910200455, 1056158828725, 30421755, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 153, 1;
1, 4845, 4845, 1;
1, 74613, 2362745, 74613, 1;
1, 735471, 358664691, 358664691, 735471, 1;
1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1;
-
A156740:= func< n,k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..7]]) ) >;
[A156740(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2021
-
b[n_, k_]:= Binomial[2*n, 2*k];
T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j,0,m}]];
Table[T[n, k, 7], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 19 2021 *)
-
def A156740(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..7)) )
flatten([[A156740(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2021
Definition corrected to give integral terms and edited by
G. C. Greubel, Jun 19 2021
A156739
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 6, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 120, 1, 1, 3060, 3060, 1, 1, 38760, 988380, 38760, 1, 1, 319770, 103285710, 103285710, 319770, 1, 1, 1961256, 5226256926, 66199254396, 5226256926, 1961256, 1, 1, 9657700, 157843517260, 16494647553670, 16494647553670, 157843517260, 9657700, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 120, 1;
1, 3060, 3060, 1;
1, 38760, 988380, 38760, 1;
1, 319770, 103285710, 103285710, 319770, 1;
1, 1961256, 5226256926, 66199254396, 5226256926, 1961256, 1;
-
A156739:= func< n,k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..6]]) ) >;
[A156739(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 18 2021
-
b[n_, k_]:= Binomial[2*n, 2*k];
T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j,0,m}]];
Table[T[n, k, 6], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 18 2021 *)
-
def A156739(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..6)) )
flatten([[A156739(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2021
Definition corrected to give integral terms and edited by
G. C. Greubel, Jun 18 2021
A156742
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 9, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 231, 1, 1, 10626, 10626, 1, 1, 230230, 10590580, 230230, 1, 1, 3108105, 3097744650, 3097744650, 3108105, 1, 1, 30045015, 404255676825, 8758872997875, 404255676825, 30045015, 1, 1, 225792840, 29367745734600, 8590065627370500, 8590065627370500, 29367745734600, 225792840, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 231, 1;
1, 10626, 10626, 1;
1, 230230, 10590580, 230230, 1;
1, 3108105, 3097744650, 3097744650, 3108105, 1;
1, 30045015, 404255676825, 8758872997875, 404255676825, 30045015, 1;
-
A156742:= func< n,k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..9]]) ) >;
[A156742(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2021
-
T[n_, k_, m_]:= Round[Product[Binomial[2*(n+j), 2*(k+j)]/Binomial[2*(n-k+j), 2*j], {j,0,m}]];
Table[T[n, k, 9], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 19 2021 *)
-
def A156742(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..9)) )
flatten([[A156742(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2021
Definition corrected to give integral terms and edited by
G. C. Greubel, Jun 19 2021
Showing 1-4 of 4 results.