A156763 Triangle T(n, k) = binomial(2*k, k)*binomial(n+k, n-k) + binomial(2*n-k, k)*binomial(2*(n-k), n-k), read by rows.
2, 3, 3, 7, 12, 7, 21, 42, 42, 21, 71, 160, 180, 160, 71, 253, 660, 770, 770, 660, 253, 925, 2814, 3570, 3360, 3570, 2814, 925, 3433, 12068, 17388, 15750, 15750, 17388, 12068, 3433, 12871, 51552, 85344, 81312, 69300, 81312, 85344, 51552, 12871
Offset: 0
Examples
Triangle begins as: 2; 3, 3; 7, 12, 7; 21, 42, 42, 21; 71, 160, 180, 160, 71; 253, 660, 770, 770, 660, 253; 925, 2814, 3570, 3360, 3570, 2814, 925; 3433, 12068, 17388, 15750, 15750, 17388, 12068, 3433; 12871, 51552, 85344, 81312, 69300, 81312, 85344, 51552, 12871; 48621, 218880, 413820, 438900, 342342, 342342, 438900, 413820, 218880, 48621;
References
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 66.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A063007:= func< n,k | Binomial(n, k)*Binomial(n+k, k) >; A156763:= func< n,k | A063007(n,k) + A063007(n,n-k) >; [A156763(n,k): k in [0..n]. n in [0..12]]; // G. C. Greubel, Jun 15 2021
-
Mathematica
T[n_, k_]:= Binomial[n+k, n-k]*Binomial[2*k, k] + Binomial[2*(n-k), n-k]*Binomial[ 2*n-k, k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 15 2021 *)
-
Sage
def A063007(n, k): return binomial(n+k, n-k)*binomial(2*k, k) def A156763(n, k): return A063007(n,k) + A063007(n,n-k) flatten([[A156763(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 15 2021
Formula
T(n, k) = binomial(2*k, k)*binomial(n+k, n-k) + binomial(2*n-k, k)*binomial(2*(n-k), n-k).
Sum_{k=0..n} T(n, k) = 2*A001850(n). - G. C. Greubel, Jun 15 2021
Extensions
Edited by G. C. Greubel, Jun 15 2021