cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156763 Triangle T(n, k) = binomial(2*k, k)*binomial(n+k, n-k) + binomial(2*n-k, k)*binomial(2*(n-k), n-k), read by rows.

Original entry on oeis.org

2, 3, 3, 7, 12, 7, 21, 42, 42, 21, 71, 160, 180, 160, 71, 253, 660, 770, 770, 660, 253, 925, 2814, 3570, 3360, 3570, 2814, 925, 3433, 12068, 17388, 15750, 15750, 17388, 12068, 3433, 12871, 51552, 85344, 81312, 69300, 81312, 85344, 51552, 12871
Offset: 0

Views

Author

Roger L. Bagula, Feb 15 2009

Keywords

Examples

			Triangle begins as:
      2;
      3,      3;
      7,     12,      7;
     21,     42,     42,     21;
     71,    160,    180,    160,     71;
    253,    660,    770,    770,    660,    253;
    925,   2814,   3570,   3360,   3570,   2814,    925;
   3433,  12068,  17388,  15750,  15750,  17388,  12068,   3433;
  12871,  51552,  85344,  81312,  69300,  81312,  85344,  51552,  12871;
  48621, 218880, 413820, 438900, 342342, 342342, 438900, 413820, 218880, 48621;
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 66.

Crossrefs

Programs

  • Magma
    A063007:= func< n,k | Binomial(n, k)*Binomial(n+k, k) >;
    A156763:= func< n,k | A063007(n,k) + A063007(n,n-k) >;
    [A156763(n,k): k in [0..n]. n in [0..12]]; // G. C. Greubel, Jun 15 2021
    
  • Mathematica
    T[n_, k_]:= Binomial[n+k, n-k]*Binomial[2*k, k] + Binomial[2*(n-k), n-k]*Binomial[ 2*n-k, k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 15 2021 *)
  • Sage
    def A063007(n, k): return binomial(n+k, n-k)*binomial(2*k, k)
    def A156763(n, k): return A063007(n,k) + A063007(n,n-k)
    flatten([[A156763(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 15 2021

Formula

T(n, k) = binomial(2*k, k)*binomial(n+k, n-k) + binomial(2*n-k, k)*binomial(2*(n-k), n-k).
T(n, k) = A063007(n, k) + A063007(n, n-k).
Sum_{k=0..n} T(n, k) = 2*A001850(n). - G. C. Greubel, Jun 15 2021

Extensions

Edited by G. C. Greubel, Jun 15 2021