cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156774 a(n) = 6561*n^2 - 3564*n + 485.

Original entry on oeis.org

485, 3482, 19601, 48842, 91205, 146690, 215297, 297026, 391877, 499850, 620945, 755162, 902501, 1062962, 1236545, 1423250, 1623077, 1836026, 2062097, 2301290, 2553605, 2819042, 3097601, 3389282, 3694085, 4012010, 4343057, 4687226
Offset: 0

Views

Author

Vincenzo Librandi, Feb 15 2009

Keywords

Comments

The identity (6561*n^2 - 3564*n + 485)^2 - (81*n^2 - 44*n + 6)*(729*n - 198)^2 = 1 can be written as a(n)^2 - A156676(n)*A156772(n)^2 = 1 for n>0.

Crossrefs

Programs

  • Magma
    I:=[485, 3482, 19601]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{485,3482,19601},40]
    Table[6561n^2-3564n+485,{n,0,30}] (* Harvey P. Dale, Dec 09 2020 *)
  • PARI
    a(n)= 6561*n^2-3564*n+485 \\ Charles R Greathouse IV, Dec 23 2011
    
  • Sage
    [485 -3564*n +6561*n^2 for n in (0..40)] # G. C. Greubel, Jun 21 2021

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (485 + 2027*x + 10610*x^2)/(1-x)^3.
E.g.f.: (485 + 2997*x + 6561*x^2)*exp(x). - G. C. Greubel, Jun 21 2021

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010