cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156798 a(n) = n^4 + 5*n^2 + 4.

Original entry on oeis.org

4, 10, 40, 130, 340, 754, 1480, 2650, 4420, 6970, 10504, 15250, 21460, 29410, 39400, 51754, 66820, 84970, 106600, 132130, 162004, 196690, 236680, 282490, 334660, 393754, 460360, 535090, 618580, 711490, 814504, 928330, 1053700, 1191370
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^4+5*n^2+4: n in [0..50]];
    
  • Mathematica
    Table[n^4+5n^2+4, {n,0,40}]
  • PARI
    a(n)=n^4+5*n^2+4
    
  • Sage
    [(n^2 +1)*(n^2 +4) for n in (0..50)] # G. C. Greubel, Jun 10 2021

Formula

a(n) = A002522(n)*A087475(n) = A000290(n) + A000290(A059100(n)) = A028552(A002522(n)).
a(n) = (n^2 + 1)*(n^2 + 4) = n^2 + (n^2 + 2)^2.
G.f.: 2*(2 -5*x +15*x^2 -5*x^3 +5*x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; corrected by R. J. Mathar, Sep 16 2009
a(0)=4, a(1)=10, a(2)=40, a(3)=130, a(4)=340, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, May 04 2011
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/8 - Pi*tanh(Pi)/24.
Sum_{n>=0} (-1)^n/a(n) = 1/8 + Pi*csch(Pi)/6 - Pi*csch(Pi)*sech(Pi)/24. (End)
E.g.f.: (4 + 6*x + 12*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Jun 10 2021