cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156815 Triangle T(n, k) = n!*StirlingS2(n, k)/binomial(n, k), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 28, 36, 24, 0, 24, 180, 300, 240, 120, 0, 120, 1488, 3240, 3120, 1800, 720, 0, 720, 15120, 43344, 50400, 33600, 15120, 5040, 0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320, 0, 40320, 2570400, 13068000, 22377600, 20018880, 11430720, 4656960, 1451520, 362880
Offset: 0

Views

Author

Roger L. Bagula, Feb 16 2009

Keywords

Examples

			Triangle begins as:
  1;
  0,    1;
  0,    1,      2;
  0,    2,      6,      6;
  0,    6,     28,     36,     24;
  0,   24,    180,    300,    240,    120;
  0,  120,   1488,   3240,   3120,   1800,    720;
  0,  720,  15120,  43344,  50400,  33600,  15120,   5040;
  0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320;
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 99.

Crossrefs

Programs

  • Magma
    [Factorial(n)*StirlingSecond(n,k)/Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 10 2021
    
  • Mathematica
    T[n_, k_] = n!*StirlingS2[n, k]/Binomial[n, k];
    Table[T[n, k], {n, 0, 12}, {k,0,n}]//Flatten
  • Sage
    flatten([[factorial(n)*stirling_number2(n,k)/binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021

Formula

T(n, k) = n!*StirlingS2(n, k)/binomial(n, k).
From G. C. Greubel, Jun 10 2021: (Start)
T(n, 1) = T(n, n) = n!.
T(n, 2) = 2*A029767(n+1).
T(n, n-1) = A180119(n). (End)

Extensions

Edited by G. C. Greubel, Jun 10 2021