A156815 Triangle T(n, k) = n!*StirlingS2(n, k)/binomial(n, k), read by rows.
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 28, 36, 24, 0, 24, 180, 300, 240, 120, 0, 120, 1488, 3240, 3120, 1800, 720, 0, 720, 15120, 43344, 50400, 33600, 15120, 5040, 0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320, 0, 40320, 2570400, 13068000, 22377600, 20018880, 11430720, 4656960, 1451520, 362880
Offset: 0
Examples
Triangle begins as: 1; 0, 1; 0, 1, 2; 0, 2, 6, 6; 0, 6, 28, 36, 24; 0, 24, 180, 300, 240, 120; 0, 120, 1488, 3240, 3120, 1800, 720; 0, 720, 15120, 43344, 50400, 33600, 15120, 5040; 0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320;
References
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 99.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[Factorial(n)*StirlingSecond(n,k)/Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 10 2021
-
Mathematica
T[n_, k_] = n!*StirlingS2[n, k]/Binomial[n, k]; Table[T[n, k], {n, 0, 12}, {k,0,n}]//Flatten
-
Sage
flatten([[factorial(n)*stirling_number2(n,k)/binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021
Formula
T(n, k) = n!*StirlingS2(n, k)/binomial(n, k).
From G. C. Greubel, Jun 10 2021: (Start)
T(n, 1) = T(n, n) = n!.
T(n, 2) = 2*A029767(n+1).
T(n, n-1) = A180119(n). (End)
Extensions
Edited by G. C. Greubel, Jun 10 2021