A156859 The main column of a version of the square spiral.
0, 3, 7, 14, 22, 33, 45, 60, 76, 95, 115, 138, 162, 189, 217, 248, 280, 315, 351, 390, 430, 473, 517, 564, 612, 663, 715, 770, 826, 885, 945, 1008, 1072, 1139, 1207, 1278, 1350, 1425, 1501, 1580, 1660, 1743, 1827, 1914, 2002, 2093, 2185, 2280, 2376, 2475, 2575
Offset: 0
Links
- E. Apricena, A version of Ulam Spiral divided into four parts.
- Minh Nguyen, 2-adic Valuations of Square Spiral Sequences, Honors Thesis, Univ. of Southern Mississippi (2021).
- Marco RipĂ , The n x n x n Points Problem Optimal Solution, viXra.org.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Programs
-
Maple
A156859:=n->n^2+n+floor((n+1)/2); seq(A156859(k), k=0..100); # Wesley Ivan Hurt, Oct 11 2013
-
Mathematica
Table[n^2 + n + Floor[(n+1)/2], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 11 2013 *)
Formula
From R. J. Mathar, Feb 20 2009: (Start)
G.f.: x*(3+x)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). (End)
a(n-1) = floor(n/(e^(1/n)-1)). - Richard R. Forberg, Jun 19 2013
a(n) + a(n+1) = A014105(n+1). - R. J. Mathar, Jul 15 2013
a(n) = floor(A000384(n+1)/2). - Bruno Berselli, Nov 11 2013
E.g.f.: (x*(5 + 2*x)*cosh(x) + (1 + 5*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
Sum_{n>=1} 1/a(n) = 4/9 + 2*log(2) - Pi/3. - Amiram Eldar, Apr 26 2024
Extensions
More terms added by Wesley Ivan Hurt, Oct 11 2013
Comments