A156901 Triangle formed by coefficients of the expansion of p(x, n), where p(x,n) = (1 + 2*x - x^2)^(n + 1)*Sum_{j >= 0} (j+1)^n*(-2*x + x^2)^j.
1, 1, 1, -2, 1, 1, -8, 8, -4, 1, 1, -22, 55, -52, 23, -6, 1, 1, -52, 290, -472, 394, -188, 50, -8, 1, 1, -114, 1265, -3624, 4838, -3668, 1750, -536, 97, -10, 1, 1, -240, 4884, -24092, 49239, -56448, 40664, -19320, 6231, -1360, 180, -12, 1, 1, -494, 17419, -142124, 441625, -730898, 749723, -515944, 247067, -83122, 19673, -3244, 331, -14, 1
Offset: 0
Examples
Irregular triangle begins as: 1; 1; 1, -2, 1; 1, -8, 8, -4, 1; 1, -22, 55, -52, 23, -6, 1; 1, -52, 290, -472, 394, -188, 50, -8, 1; 1, -114, 1265, -3624, 4838, -3668, 1750, -536, 97, -10, 1; 1, -240, 4884, -24092, 49239, -56448, 40664, -19320, 6231, -1360, 180, -12, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Mathematica
p[x_, n_]= (1+2*x-x^2)^(n+1)*Sum[(k+1)^n*(-2*x+x^2)^k, {k,0,Infinity}]; Table[CoefficientList[p[x, n], x], {n,0,10}]//Flatten
-
Sage
def T(n, k): return ( (1+2*x-x^2)^(n+1)*sum((j+1)^n*(x^2-2*x)^j for j in (0..2*n+1)) ).series(x, 2*n+2).list()[k] flatten([1]+[[T(n, k) for k in (0..2*n-2)] for n in (1..12)]) # G. C. Greubel, Jan 07 2022
Formula
T(n, k) = coefficients of the expansion of p(x, n), where p(x,n) = (1 + 2*x - x^2)^(n + 1)*Sum_{j >= 0} (j+1)^n*(-2*x + x^2)^j.
T(n, 1) = (-1)*A005803(n) for n >= 2.
Extensions
Edited by G. C. Greubel, Jan 07 2022