A156903 Abundant numbers (A005101) whose abundance is odd.
18, 36, 72, 100, 144, 162, 196, 200, 288, 324, 392, 400, 450, 576, 648, 784, 800, 882, 900, 968, 1152, 1296, 1352, 1458, 1568, 1600, 1764, 1800, 1936, 2178, 2304, 2450, 2500, 2592, 2704, 2916, 3042, 3136, 3200, 3528, 3600, 3872, 4050, 4356, 4608, 4624
Offset: 1
Keywords
Examples
k = 18 is in the sequence because its divisors are {1,2,3,6,9,18} which sum to sigma(k) = 39; so its abundance is sigma(k) - 2k = 39 - 36 = 3.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..22927 (corrected by Michel Marcus)
- Eric Weisstein's World of Mathematics, Abundant Number
Crossrefs
Positions of odd negative terms in A378600.
Programs
-
GAP
Filtered([1..5000],k->Sigma(k)-2*k>0 and (Sigma(k)-2*k) mod 2=1); # Muniru A Asiru, Dec 11 2018
-
Maple
with(numtheory): select(k->sigma(k)>2*k and modp(sigma(k)-2*k,2)=1,[$1..5000]); # Muniru A Asiru, Dec 11 2018
-
Mathematica
abundance[n_] := DivisorSigma[1, n] - 2 n; Select[Range[1000], abundance[#] > 0 && Mod[abundance[#], 2] == 1 &] abundOddAbundQ[n_] := If[MemberQ[{0, 2, 4, 8, 9, 14, 16, 18, 20, 26, 28, 32}, Mod[n, 36]], a = DivisorSigma[1, n]; OddQ@a && a > 2 n]; Select[ Range@ 5000, abundOddAbundQ@# &] (* Robert G. Wilson v, Dec 23 2018 *)
-
PARI
is(n)=my(k=sigma(n)-2*n); k>0 && k%2 \\ Charles R Greathouse IV, Feb 21 2017
-
Python
from sympy.ntheory import divisor_sigma def a(n): return divisor_sigma(n) - 2*n [n for n in range(18, 5001) if a(n) > 0 and a(n) % 2] # Indranil Ghosh, Mar 22 2017
Extensions
Name edited by Michel Marcus and Charles R Greathouse IV, Mar 26 2017
Edited by N. J. A. Sloane, Jun 21 2020 at the suggestion of Amiram Eldar
Comments