cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156984 Triangle T(n, k) = n!*Sum_{j=k..n} (-1)^(j+k)*binomial(k+j, j)/j!, read by rows.

Original entry on oeis.org

1, 0, 2, 1, 1, 6, 2, 7, 8, 20, 9, 23, 47, 45, 70, 44, 121, 214, 281, 224, 252, 265, 719, 1312, 1602, 1554, 1050, 924, 1854, 5041, 9148, 11334, 10548, 8142, 4752, 3432, 14833, 40319, 73229, 90507, 84879, 63849, 41019, 21021, 12870, 133496, 362881, 659006, 814783, 763196, 576643, 364166, 200629, 91520, 48620
Offset: 0

Views

Author

Roger L. Bagula, Feb 20 2009

Keywords

Comments

Row sums are: {1, 2, 8, 37, 194, 1136, 7426, 54251, 442526, 4014940, ...}.
The first column gives the subfactorials, or rencontres, numbers A000166. See Riordan's p_n(k) equation 17 for further reference.

Examples

			Triangle begins as:
       1;
       0,      2;
       1,      1,      6;
       2,      7,      8,     20;
       9,     23,     47,     45,     70;
      44,    121,    214,    281,    224,    252;
     265,    719,   1312,   1602,   1554,   1050,    924;
    1854,   5041,   9148,  11334,  10548,   8142,   4752,   3432;
   14833,  40319,  73229,  90507,  84879,  63849,  41019,  21021, 12870;
  133496, 362881, 659006, 814783, 763196, 576643, 364166, 200629, 91520, 48620;
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 57-65

Crossrefs

Cf. A000166.

Programs

  • Magma
    [(&+[ (-1)^(j+k)*Binomial(n,j)*Binomial(k+j,j)*Factorial(n-j): j in [k..n]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
  • Maple
    A156984:= (n,k) -> add( (-1)^(j+k)*binomial(k+j,j)*(n!/j!), j=k..n );
    seq(seq(A156984(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 09 2021
  • Mathematica
    Table[n!*Sum[(-1)^(j-k)*Binomial[k+j, j]/j!, {j,k,n}], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    flatten([[sum( (-1)^(j+k)*binomial(n,j)*binomial(k+j,j)*factorial(n-j) for j in (k..n) ) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
    

Formula

T(n, k) = n!*Sum_{j=k..n} (-1)^(j+k)*binomial(k+j, j)/j!.

Extensions

Edited by G. C. Greubel, Mar 09 2021