A156984 Triangle T(n, k) = n!*Sum_{j=k..n} (-1)^(j+k)*binomial(k+j, j)/j!, read by rows.
1, 0, 2, 1, 1, 6, 2, 7, 8, 20, 9, 23, 47, 45, 70, 44, 121, 214, 281, 224, 252, 265, 719, 1312, 1602, 1554, 1050, 924, 1854, 5041, 9148, 11334, 10548, 8142, 4752, 3432, 14833, 40319, 73229, 90507, 84879, 63849, 41019, 21021, 12870, 133496, 362881, 659006, 814783, 763196, 576643, 364166, 200629, 91520, 48620
Offset: 0
Examples
Triangle begins as: 1; 0, 2; 1, 1, 6; 2, 7, 8, 20; 9, 23, 47, 45, 70; 44, 121, 214, 281, 224, 252; 265, 719, 1312, 1602, 1554, 1050, 924; 1854, 5041, 9148, 11334, 10548, 8142, 4752, 3432; 14833, 40319, 73229, 90507, 84879, 63849, 41019, 21021, 12870; 133496, 362881, 659006, 814783, 763196, 576643, 364166, 200629, 91520, 48620;
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 57-65
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A000166.
Programs
-
Magma
[(&+[ (-1)^(j+k)*Binomial(n,j)*Binomial(k+j,j)*Factorial(n-j): j in [k..n]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
-
Maple
A156984:= (n,k) -> add( (-1)^(j+k)*binomial(k+j,j)*(n!/j!), j=k..n ); seq(seq(A156984(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 09 2021
-
Mathematica
Table[n!*Sum[(-1)^(j-k)*Binomial[k+j, j]/j!, {j,k,n}], {n,0,12}, {k,0,n}]//Flatten
-
Sage
flatten([[sum( (-1)^(j+k)*binomial(n,j)*binomial(k+j,j)*factorial(n-j) for j in (k..n) ) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
Formula
T(n, k) = n!*Sum_{j=k..n} (-1)^(j+k)*binomial(k+j, j)/j!.
Extensions
Edited by G. C. Greubel, Mar 09 2021
Comments