A156985 Triangle formed by coefficients of the expansion of p(x,n) = (1-x)^(2*n + 1)*Sum_{j >= 0} (1 +j +j^2)^n * x^j.
1, 1, 0, 1, 1, 4, 14, 4, 1, 1, 20, 175, 328, 175, 20, 1, 1, 72, 1708, 9784, 17190, 9784, 1708, 72, 1, 1, 232, 14189, 199616, 884498, 1431728, 884498, 199616, 14189, 232, 1, 1, 716, 108250, 3353948, 31986447, 115907544, 176287788, 115907544, 31986447, 3353948, 108250, 716, 1
Offset: 0
Examples
Irregular triangle begins as: 1; 1, 0, 1; 1, 4, 14, 4, 1; 1, 20, 175, 328, 175, 20, 1; 1, 72, 1708, 9784, 17190, 9784, 1708, 72, 1; 1, 232, 14189, 199616, 884498, 1431728, 884498, 199616, 14189, 232, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Mathematica
p[x_, n_] = (1-x)^(2*n+1)*Sum[(1+k+k^2)^n*x^k, {k, 0, Infinity}]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
-
Sage
def T(n, k): return ( (1-x)^(2*n+1)*sum((j^2+j+1)^n*x^j for j in (0..2*n+1)) ).series(x, 2*n+2).list()[k] flatten([1]+[[T(n, k) for k in (0..2*n)] for n in (1..12)]) # G. C. Greubel, Jan 07 2022
Formula
T(n, k) = coefficients of the expansion of p(x, n), where p(x,n) = (1-x)^(2*n + 1)*Sum_{j >= 0} (1 +j +j^2)^n * x^j.
Sum_{k=0..2*n} T(n, k) = A010050(n).
Extensions
Edited by G. C. Greubel, Jan 07 2022