cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156985 Triangle formed by coefficients of the expansion of p(x,n) = (1-x)^(2*n + 1)*Sum_{j >= 0} (1 +j +j^2)^n * x^j.

Original entry on oeis.org

1, 1, 0, 1, 1, 4, 14, 4, 1, 1, 20, 175, 328, 175, 20, 1, 1, 72, 1708, 9784, 17190, 9784, 1708, 72, 1, 1, 232, 14189, 199616, 884498, 1431728, 884498, 199616, 14189, 232, 1, 1, 716, 108250, 3353948, 31986447, 115907544, 176287788, 115907544, 31986447, 3353948, 108250, 716, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 20 2009

Keywords

Examples

			Irregular triangle begins as:
  1;
  1,   0,     1;
  1,   4,    14,      4,      1;
  1,  20,   175,    328,    175,      20,      1;
  1,  72,  1708,   9784,  17190,    9784,   1708,     72,     1;
  1, 232, 14189, 199616, 884498, 1431728, 884498, 199616, 14189, 232, 1;
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = (1-x)^(2*n+1)*Sum[(1+k+k^2)^n*x^k, {k, 0, Infinity}];
    Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
  • Sage
    def T(n, k): return ( (1-x)^(2*n+1)*sum((j^2+j+1)^n*x^j for j in (0..2*n+1)) ).series(x, 2*n+2).list()[k]
    flatten([1]+[[T(n, k) for k in (0..2*n)] for n in (1..12)]) # G. C. Greubel, Jan 07 2022

Formula

T(n, k) = coefficients of the expansion of p(x, n), where p(x,n) = (1-x)^(2*n + 1)*Sum_{j >= 0} (1 +j +j^2)^n * x^j.
Sum_{k=0..2*n} T(n, k) = A010050(n).

Extensions

Edited by G. C. Greubel, Jan 07 2022