cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A157003 Transform of Catalan numbers whose Hankel transform gives the Somos-4 sequence.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 78, 234, 722, 2274, 7280, 23617, 77466, 256481, 856016, 2876940, 9728090, 33072228, 112974592, 387580856, 1334821448, 4613225722, 15994465796, 55615889745, 193904367362, 677709772035, 2374027931492, 8333765738127
Offset: 0

Views

Author

Paul Barry, Feb 20 2009

Keywords

Comments

Image of the Catalan numbers A000108 by the Riordan array (1, x*(1-x^2)). Hankel transform is A006720(n+2).
Partial sums of A157002.
Empirical: number of Dyck n-paths that avoid any one of {UDUDD, UUDDD, UUDUD, UUUDD}. e.g. of the 5 Dyck 3-paths UUDUDD contains UDUDD so a(3)=4. Also, number of Dyck n-paths that avoid DUD that ends at height of form 3*k+1, or that avoid UDU that ends at height of form 3*k-1. e.g. of the 5 Dyck 3-paths UUDUDD contains DUD ending at height 1 so a(3)=4. - David Scambler, Mar 24 2011
Apparently: number of Dyck n-paths with no descent length equal to twice the preceding ascent length. - David Scambler, May 11 2012

Crossrefs

Cf. A000108.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-Sqrt(1-4*x*(1-x^2)))/(2*x*(1-x^2)) )); // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x*(1-x^2)])/(2*x*(1-x^2)),{x,0,20}],x] (* Vaclav Kotesovec, Jan 27 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-sqrt(1-4*x*(1-x^2)))/(2*x*(1-x^2))) \\ G. C. Greubel, Feb 26 2019
    
  • Sage
    ((1-sqrt(1-4*x*(1-x^2)))/(2*x*(1-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019

Formula

G.f.: c(x*(1-x^2)) where c(x) is the g.f. of A000108;
a(n) = Sum_{k=0..n} (-1)^((n-k)/2)*(1+(-1)^(n-k))*C(k,floor((n-k)/2))*A000108(k)/2.
Conjecture: (n+1)*a(n) +(n+2)*a(n-1) +(-21*n+29)*a(n-2) +(3*n-16)*a(n-3) +40*(n-3)*a(n-4) +2*(-2*n+7)*a(n-5) +10*(-2*n+9)*a(n-6)=0. - R. J. Mathar, Nov 19 2014
Recurrence: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + (n+1)*a(n-2) - 8*(n-2)*a(n-3) + 2*(2*n-7)*a(n-5). - Vaclav Kotesovec, Feb 01 2015
a(n) ~ sqrt(3-8*r) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*sin(arccos(-3^(3/2)/8)/3 - Pi/6)/sqrt(3). - Vaclav Kotesovec, Jun 05 2022

A377264 Consider the recurrence d(k) = (d(k-3)*d(k-2) + 1)/(d(k-5)*d(k-4)*d(k-3)^2*d(k-2)^2*d(k-1)), with d(0..4) = {1,1,1,2,1}. a(n) = numerator(d(2*n+1)).

Original entry on oeis.org

1, 2, 3, 14, 69, 413, 7222, 90211, 2577626, 127385577, 5092018073, 655664812074, 78618294607139, 13276948495989478, 5995083279193033837, 1895278734817024984181, 1542333923096758721461086, 1867485777936169465836858947, 2020248742951852823878208914098, 7078136335206254534330825538868049
Offset: 0

Views

Author

Thomas Scheuerle, Oct 22 2024

Keywords

Comments

Consider the sequence s(k) with ordinary generating function: 1/(1-d(0)*x/(1-d(1)*x/(1-d(2)*x/(...)))), the Hankel sequence transform of s(k) is A006720 starting with the third term.
This is a special case of a more general theorem: Consider the sequence h(k) with generating function 1/(1-c(0)*x/(1-c(1)*x/(1-c(2)*x/(...)))), if c(2*k+1) = (c(2*k-2)*c(2*k-1) + t)/(c(2*k-4)*c(2*k-3)*c(2*k-2)^2*c(2*k-1)^2*c(2*k)) for all k with c(< 0) = 1, then the Hankel sequence transform of h(k) satisfies a Somos-4 A(1, t) recurrence.
If we would change the start condition into d(0..4) = {1,1,-1,-2,(5/2)}, the expansion of the continued fraction generating function would give us A171416, its Hankel sequence transform is again A006720. There exist infinitely many sequences with the same Hankel sequence transform.

Crossrefs

The Hankel transform is directly related to A006720: A157002, A157003, A160702, A171416, A173992, A173993, A254314.

Programs

  • PARI
    d(n) = if(n<5, [1,1,1,2,1][n+1], (d(n-3)*d(n-2)+1)/(d(n-5)*d(n-4)*d(n-3)^2*d(n-2)^2*d(n-1)))
    a(n) = numerator(d(2*n+1))
    
  • PARI
    a(n) = -numerator(ellmul(ellinit([0, 3, -1, 2, 0]), [-1,0], 2*n+1)[1])

Formula

a(n) = A006720(n+1)*A006720(n+3).
denominator(d(2*n+1)) = A006720(n+2)^2.
-a(n)/A006720(n+3)^2 are the x-coordinates of (2*n+1) times [-1,0] on the curve y^2 - y = x^3 + 3*x^2 + 2*x. "Times" means here the multiplication under the elliptic group law.
Showing 1-2 of 2 results.