A157037 Numbers with prime arithmetic derivative A003415.
6, 10, 22, 30, 34, 42, 58, 66, 70, 78, 82, 105, 114, 118, 130, 142, 154, 165, 174, 182, 202, 214, 222, 231, 238, 246, 255, 273, 274, 282, 285, 286, 298, 310, 318, 345, 357, 358, 366, 370, 382, 385, 390, 394, 399, 418, 430, 434, 442, 454, 455, 465, 474, 478
Offset: 1
Keywords
Examples
A003415(42) = A003415(2*3*7) = 2*3+3*7+7*2 = 41 = A000040(13), therefore 42 is a term.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001 (first 1000 terms from Reinhard Zumkeller)
Crossrefs
Programs
-
Haskell
a157037 n = a157037_list !! (n-1) a157037_list = filter ((== 1) . a010051' . a003415) [1..] -- Reinhard Zumkeller, Apr 08 2015
-
Mathematica
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range[500], dn[dn[#]] == 1 &] (* T. D. Noe, Mar 07 2013 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); isA157037(n) = isprime(A003415(n)); \\ Antti Karttunen, Oct 19 2019
-
Python
from itertools import count, islice from sympy import isprime, factorint def A157037_gen(): # generator of terms return filter(lambda n:isprime(sum(n*e//p for p,e in factorint(n).items())), count(2)) A157037_list = list(islice(A157037_gen(),20)) # Chai Wah Wu, Jun 23 2022
Comments