A157097 Consider all Consecutive Integer Pythagorean 11-tuples (X, X+1, X+2, X+3, X+4, X+5, Z-4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives Z values.
5, 65, 1385, 30365, 666605, 14634905, 321301265, 7053992885, 154866542165, 3400009934705, 74645352021305, 1638797734533965, 35978904807725885, 789897108035435465, 17341757471971854305, 380728767275345359205, 8358691122585626048165, 183510475929608427700385, 4028871779328799783360265
Offset: 0
Examples
a(2)=65 since 55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2 + 65^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..500
- Tanya Khovanova, Recursive Sequences
- Ron Knott, Pythagorean Triples and Online Calculators
- Index entries for linear recurrences with constant coefficients, signature (23,-23,1).
Programs
-
Mathematica
LinearRecurrence[{23, -23, 1}, {5, 65, 1385}, 25] (* Paolo Xausa, May 29 2025 *)
Formula
For n > 1, a(n) = 22*a(n-1) - a(n-2) - 40.
For n > 0, a(n) = 12*A157096(n-1) + 11*a(n-1) + 10.
a(n) = 5^n*6*((1+sqrt(6/5))^(2*n+1) - (1-sqrt(6/5))^(2*n+1))/(4*sqrt(6/5)) + 4/2; e.g., 1385 = 5^2*6*((1+sqrt(6/5))^5 - (1-sqrt(6/5))^5)/(4*sqrt(6/5)) + 4/2.
Limit_{n->oo} a(n+1)/a(n) = 5*(1+sqrt(6/5))^2 = 11 + 2*sqrt(30).
G.f.: 5*(1-10*x+x^2)/((1-x)*(1-22*x+x^2)). - Colin Barker, Mar 27 2012
a(n) = 23*a(n-1) - 23*a(n-2) + a(n-3). - Wesley Ivan Hurt, Oct 26 2020
Extensions
a(13), a(15) corrected by Georg Fischer, Oct 26 2020
Comments