cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157114 Triangle T(n, k) = binomial(n*k, n-k) + binomial(n*(n-k), k), read by rows.

Original entry on oeis.org

2, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 56, 16, 1, 1, 25, 225, 225, 25, 1, 1, 36, 771, 1632, 771, 36, 1, 1, 49, 2597, 9261, 9261, 2597, 49, 1, 1, 64, 9136, 52384, 71920, 52384, 9136, 64, 1, 1, 81, 33777, 320814, 525987, 525987, 320814, 33777, 81, 1, 1, 100, 129130, 2090540, 4326015, 4237520, 4326015, 2090540, 129130, 100, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 23 2009

Keywords

Examples

			Triangle begins as:
  2;
  1,   1;
  1,   4,      1;
  1,   9,      9,       1;
  1,  16,     56,      16,       1;
  1,  25,    225,     225,      25,       1;
  1,  36,    771,    1632,     771,      36,       1;
  1,  49,   2597,    9261,    9261,    2597,      49,       1;
  1,  64,   9136,   52384,   71920,   52384,    9136,      64,      1;
  1,  81,  33777,  320814,  525987,  525987,  320814,   33777,     81,   1;
  1, 100, 129130, 2090540, 4326015, 4237520, 4326015, 2090540, 129130, 100, 1;
		

Crossrefs

Cf. A099237.

Programs

  • Magma
    A157114:= func< n,k | Binomial(n*k, n-k) + Binomial(n*(n-k), k) >;
    [A157114(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
  • Maple
    A157114:= (n,k) -> binomial(n*k, n-k) + binomial(n*(n-k), k);
    seq(seq(A157114(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 09 2021
  • Mathematica
    T[n_, k_]:= Binomial[n*k, n-k], Binomial[n*(n-k), k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 09 2021 *)
  • Sage
    def A157114(n,k): return binomial(n*k, n-k) + binomial(n*(n-k), k)
    flatten([[A157114(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
    

Formula

T(n, k) = binomial(n*k, n-k) + binomial(n*(n-k), k).
Sum_{k=0..n} T(n,k) = 2*A099237(n). - G. C. Greubel, Mar 09 2021

Extensions

Edited by G. C. Greubel, Mar 09 2021