A157114 Triangle T(n, k) = binomial(n*k, n-k) + binomial(n*(n-k), k), read by rows.
2, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 56, 16, 1, 1, 25, 225, 225, 25, 1, 1, 36, 771, 1632, 771, 36, 1, 1, 49, 2597, 9261, 9261, 2597, 49, 1, 1, 64, 9136, 52384, 71920, 52384, 9136, 64, 1, 1, 81, 33777, 320814, 525987, 525987, 320814, 33777, 81, 1, 1, 100, 129130, 2090540, 4326015, 4237520, 4326015, 2090540, 129130, 100, 1
Offset: 0
Examples
Triangle begins as: 2; 1, 1; 1, 4, 1; 1, 9, 9, 1; 1, 16, 56, 16, 1; 1, 25, 225, 225, 25, 1; 1, 36, 771, 1632, 771, 36, 1; 1, 49, 2597, 9261, 9261, 2597, 49, 1; 1, 64, 9136, 52384, 71920, 52384, 9136, 64, 1; 1, 81, 33777, 320814, 525987, 525987, 320814, 33777, 81, 1; 1, 100, 129130, 2090540, 4326015, 4237520, 4326015, 2090540, 129130, 100, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A099237.
Programs
-
Magma
A157114:= func< n,k | Binomial(n*k, n-k) + Binomial(n*(n-k), k) >; [A157114(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
-
Maple
A157114:= (n,k) -> binomial(n*k, n-k) + binomial(n*(n-k), k); seq(seq(A157114(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 09 2021
-
Mathematica
T[n_, k_]:= Binomial[n*k, n-k], Binomial[n*(n-k), k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 09 2021 *)
-
Sage
def A157114(n,k): return binomial(n*k, n-k) + binomial(n*(n-k), k) flatten([[A157114(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
Formula
T(n, k) = binomial(n*k, n-k) + binomial(n*(n-k), k).
Sum_{k=0..n} T(n,k) = 2*A099237(n). - G. C. Greubel, Mar 09 2021
Extensions
Edited by G. C. Greubel, Mar 09 2021