cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157136 G.f. satisfies: A(x) = Sum_{n>=0} x^(n^2) * A(x)^(n^2).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 75, 164, 401, 1046, 2718, 6878, 17200, 43486, 112202, 293540, 770535, 2019891, 5296670, 13942944, 36902130, 98097968, 261456388, 697970447, 1866383507, 5001333169, 13432923544, 36154294520, 97475330092, 263188299372
Offset: 0

Views

Author

Paul D. Hanna, Feb 24 2009

Keywords

Comments

Apparently: Number of Dyck n-paths with each ascent length being a square number. [David Scambler, May 09 2012]

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 16*x^6 + 36*x^7 +...
A(x)^4 = 1 + 4*x + 10*x^2 + 20*x^3 + 39*x^4 + 88*x^5 + 228*x^6 +...
A(x)^9 = 1 + 9*x + 45*x^2 + 165*x^3 + 504*x^4 + 1404*x^5 +...
A(x)^16 = 1 + 16*x + 136*x^2 + 816*x^3 + 3892*x^4 + 15824*x^5 +...
where
A(x) = 1 + x*A(x) + x^4*A(x)^4 + x^9*A(x)^9 + x^16*A(x)^16 +...
A(x) = (1/x)*Series_Reversion(x/(1 + x + x^4 + x^9 + x^16 +...)).
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_, d_] := f[x, y, d] = If[x < 0 || y < x, 0, If[x == 0 && y == 0, 1, f[x-1, y, 0] + f[x, y - If[d == 0, 1, Sqrt[d]*2 + 1], If[d == 0, 1, Sqrt[d]*2 + 1 + d]]]]; Table[f[n, n, 0], {n, 0, 31}] (* David Scambler, May 09 2012 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=sum(m=0,sqrtint(n),x^(m^2)*A^(m^2)));polcoeff(A,n)}
    
  • PARI
    seq(n)={Vec(serreverse(x/(1 + sum(i=1, sqrtint(n), x^(i^2))) + O(x*x^n)))} \\ Andrew Howroyd, Apr 28 2018

Formula

G.f. satisfies: A(x) = B(x*A(x)) where B(x) = A(x/B(x)) = Sum_{n>=0} x^(n^2),
where a(n) = [x^n] B(x)^(n+1)/(n+1) for n>=0.
G.f.: A(x) = (1/x)*Series_Reversion( x / Sum_{n>=0} x^(n^2) ).
From Paul D. Hanna, Apr 24 2010: (Start)
SPECIAL VALUES:
. at x = 2*exp(-Pi)/(1+Pi^(1/4)/gamma(3/4)) = 0.04142369369176926261...
. A(x) = B(exp(-Pi)) = (1+Pi^(1/4)/gamma(3/4))/2 = 1.043217405606654...
RADIUS OF CONVERGENCE r:
. at r = 0.3529672118496605771445592553666318566205464502456806...,
. A(r) = 1.9530374869760035836323161721583051467541841357702661...,
where r and A(r) are given by:
. r = z/B(z) and
. A(r) = B(z) = Sum_{n>=0} z^(n^2)
such that z is the real root nearest the origin that satisfies:
. B(z) - z*B'(z) = 0, which has solution:
. z = 0.689358196415787767209694723600383373645983284157633311584643...
Here, B(z) = Sum_{n>=0} z^(n^2), the partial Jacobi theta_3 function.
(End)