A157147 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 110, 37, 1, 1, 83, 568, 568, 83, 1, 1, 177, 2415, 5534, 2415, 177, 1, 1, 367, 9137, 41027, 41027, 9137, 367, 1, 1, 749, 32104, 255155, 498814, 255155, 32104, 749, 1, 1, 1515, 107442, 1409814, 4845540, 4845540, 1409814, 107442, 1515, 1
Offset: 0
Examples
1; 1, 1; 1, 5, 1; 1, 15, 15, 1; 1, 37, 110, 37, 1; 1, 83, 568, 568, 83, 1; 1, 177, 2415, 5534, 2415, 177, 1; 1, 367, 9137, 41027, 41027, 9137, 367, 1; 1, 749, 32104, 255155, 498814, 255155, 32104, 749, 1; 1, 1515, 107442, 1409814, 4845540, 4845540, 1409814, 107442, 1515, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Maple
A157147:= proc(n,k) option remember; if k < 0 or k> n then 0; elif k = 0 or k = n then 1; else (n-k+1)*procname(n-1,k-1) +(k+1)*procname(n-1,k) +k*(n-k)*procname(n-2,k-1); end if; end proc: seq(seq(A157147(n,k),k=0..n),n=0..10); # R. J. Mathar, Feb 06 2015
-
Mathematica
T[n_, k_, m_]:= T[n,k,m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]]; Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
Sage
def T(n,k,m): # A157147 if (k==0 or k==n): return 1 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m) flatten([[T(n,k,1) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 09 2022
Formula
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1.
T(n, n-k) = T(n, k).
Extensions
Edited by G. C. Greubel, Jan 09 2022