cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157147 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 110, 37, 1, 1, 83, 568, 568, 83, 1, 1, 177, 2415, 5534, 2415, 177, 1, 1, 367, 9137, 41027, 41027, 9137, 367, 1, 1, 749, 32104, 255155, 498814, 255155, 32104, 749, 1, 1, 1515, 107442, 1409814, 4845540, 4845540, 1409814, 107442, 1515, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			  1;
  1,    1;
  1,    5,      1;
  1,   15,     15,       1;
  1,   37,    110,      37,       1;
  1,   83,    568,     568,      83,       1;
  1,  177,   2415,    5534,    2415,     177,       1;
  1,  367,   9137,   41027,   41027,    9137,     367,      1;
  1,  749,  32104,  255155,  498814,  255155,   32104,    749,    1;
  1, 1515, 107442, 1409814, 4845540, 4845540, 1409814, 107442, 1515, 1;
		

Crossrefs

Programs

  • Maple
    A157147:= proc(n,k)
        option remember;
        if k < 0 or k> n then 0;
        elif k = 0 or k = n then 1;
        else (n-k+1)*procname(n-1,k-1) +(k+1)*procname(n-1,k) +k*(n-k)*procname(n-2,k-1);
        end if;
    end proc:
    seq(seq(A157147(n,k),k=0..n),n=0..10); # R. J. Mathar, Feb 06 2015
  • Mathematica
    T[n_, k_, m_]:= T[n,k,m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]];
    Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
  • Sage
    def T(n,k,m): # A157147
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 09 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1.
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 09 2022