A157273
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 47, 47, 1, 1, 154, 590, 154, 1, 1, 477, 4498, 4498, 477, 1, 1, 1448, 28323, 71232, 28323, 1448, 1, 1, 4363, 162313, 816503, 816503, 162313, 4363, 1, 1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1, 1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 47, 47, 1;
1, 154, 590, 154, 1;
1, 477, 4498, 4498, 477, 1;
1, 1448, 28323, 71232, 28323, 1448, 1;
1, 4363, 162313, 816503, 816503, 162313, 4363, 1;
1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1;
1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157148
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 33, 33, 1, 1, 112, 394, 112, 1, 1, 353, 3150, 3150, 353, 1, 1, 1080, 20719, 51192, 20719, 1080, 1, 1, 3265, 122535, 620415, 620415, 122535, 3265, 1, 1, 9824, 681040, 6312360, 12805614, 6312360, 681040, 9824, 1, 1, 29505, 3643980, 57451300, 209503086, 209503086, 57451300, 3643980, 29505, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 33, 33, 1;
1, 112, 394, 112, 1;
1, 353, 3150, 3150, 353, 1;
1, 1080, 20719, 51192, 20719, 1080, 1;
1, 3265, 122535, 620415, 620415, 122535, 3265, 1;
1, 9824, 681040, 6312360, 12805614, 6312360, 681040, 9824, 1;
1, 29505, 3643980, 57451300, 209503086, 209503086, 57451300, 3643980, 29505, 1;
Cf.
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
A157148 := proc(n,k)
option remember;
if k < 0 or k> n then 0;
elif k = 0 or k = n then 1;
else (2*(n-k)+1)*procname(n-1,k-1) + (2*k+1)*procname(n-1,k) + 2*k*(n-k)*procname(n-2,k-1);
end if;
end proc:
seq(seq(A157148(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
@CachedFunction
def T(n,k,m): # A157148
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
A157149
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 11, 1, 1, 57, 57, 1, 1, 247, 930, 247, 1, 1, 1013, 10006, 10006, 1013, 1, 1, 4083, 89139, 225230, 89139, 4083, 1, 1, 16369, 719691, 3771323, 3771323, 719691, 16369, 1, 1, 65519, 5495836, 53239541, 108865438, 53239541, 5495836, 65519, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 11, 1;
1, 57, 57, 1;
1, 247, 930, 247, 1;
1, 1013, 10006, 10006, 1013, 1;
1, 4083, 89139, 225230, 89139, 4083, 1;
1, 16369, 719691, 3771323, 3771323, 719691, 16369, 1;
1, 65519, 5495836, 53239541, 108865438, 53239541, 5495836, 65519, 1;
Cf.
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
A157149 := proc(n,k)
option remember;
if k < 0 or k> n then 0;
elif k = 0 or k = n then 1;
else (3*(n-k)+1)*procname(n-1,k-1) + (3*k+1)*procname(n-1,k) + 3*k*(n-k)*procname(n-2,k-1);
end if;
end proc:
seq(seq(A157149(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
@CachedFunction
def T(n,k,m): # A157149
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
A157150
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 87, 87, 1, 1, 460, 1790, 460, 1, 1, 2333, 24178, 24178, 2333, 1, 1, 11706, 271983, 693068, 271983, 11706, 1, 1, 58579, 2786993, 14794139, 14794139, 2786993, 58579, 1, 1, 292952, 27109300, 267169640, 547357078, 267169640, 27109300, 292952, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 87, 87, 1;
1, 460, 1790, 460, 1;
1, 2333, 24178, 24178, 2333, 1;
1, 11706, 271983, 693068, 271983, 11706, 1;
1, 58579, 2786993, 14794139, 14794139, 2786993, 58579, 1;
1, 292952, 27109300, 267169640, 547357078, 267169640, 27109300, 292952, 1;
Cf.
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
A157150:= proc(n, k);
if k<0 or nA157150(n, k), k=0..n), n=0..10); # R. J. Mathar, Feb 06 2015
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
@CachedFunction
def T(n,k,m): # A157150
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,4) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
A157151
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 123, 123, 1, 1, 769, 3046, 769, 1, 1, 4655, 49500, 49500, 4655, 1, 1, 27981, 673015, 1721070, 673015, 27981, 1, 1, 167947, 8363421, 44640435, 44640435, 8363421, 167947, 1, 1, 1007753, 98882848, 982172031, 2012583870, 982172031, 98882848, 1007753, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 123, 123, 1;
1, 769, 3046, 769, 1;
1, 4655, 49500, 49500, 4655, 1;
1, 27981, 673015, 1721070, 673015, 27981, 1;
1, 167947, 8363421, 44640435, 44640435, 8363421, 167947, 1;
1, 1007753, 98882848, 982172031, 2012583870, 982172031, 98882848, 1007753, 1;
Cf.
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
A157151:= proc(n, k)
if k<0 or nA157151(n, k), k=0..n), n=0..10); # R. J. Mathar, Feb 06 2015
-
T[n_, k_, m_]:= T[n,k,m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]];
Table[T[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
def T(n,k,m): # A157147
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,5) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 09 2022
A157152
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 30, 15, 1, 1, 31, 108, 108, 31, 1, 1, 63, 359, 594, 359, 63, 1, 1, 127, 1145, 2875, 2875, 1145, 127, 1, 1, 255, 3568, 12985, 19246, 12985, 3568, 255, 1, 1, 511, 10966, 56306, 116640, 116640, 56306, 10966, 511, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 30, 15, 1;
1, 31, 108, 108, 31, 1;
1, 63, 359, 594, 359, 63, 1;
1, 127, 1145, 2875, 2875, 1145, 127, 1;
1, 255, 3568, 12985, 19246, 12985, 3568, 255, 1;
1, 511, 10966, 56306, 116640, 116640, 56306, 10966, 511, 1;
1, 1023, 33417, 238024, 665702, 918530, 665702, 238024, 33417, 1023, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
@CachedFunction
def T(n,k,m): # A157152
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
A157153
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 98, 40, 1, 1, 121, 614, 614, 121, 1, 1, 364, 3519, 6832, 3519, 364, 1, 1, 1093, 19179, 64759, 64759, 19179, 1093, 1, 1, 3280, 101368, 558712, 947038, 558712, 101368, 3280, 1, 1, 9841, 525436, 4538324, 12078814, 12078814, 4538324, 525436, 9841, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 13, 13, 1;
1, 40, 98, 40, 1;
1, 121, 614, 614, 121, 1;
1, 364, 3519, 6832, 3519, 364, 1;
1, 1093, 19179, 64759, 64759, 19179, 1093, 1;
1, 3280, 101368, 558712, 947038, 558712, 101368, 3280, 1;
1, 9841, 525436, 4538324, 12078814, 12078814, 4538324, 525436, 9841, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
@CachedFunction
def T(n,k,m): # A157153
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157154
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 21, 1, 1, 85, 234, 85, 1, 1, 341, 2110, 2110, 341, 1, 1, 1365, 17163, 35882, 17163, 1365, 1, 1, 5461, 131751, 505979, 505979, 131751, 5461, 1, 1, 21845, 976876, 6395471, 11433118, 6395471, 976876, 21845, 1, 1, 87381, 7089360, 75400800, 220599330, 220599330, 75400800, 7089360, 87381, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 21, 21, 1;
1, 85, 234, 85, 1;
1, 341, 2110, 2110, 341, 1;
1, 1365, 17163, 35882, 17163, 1365, 1;
1, 5461, 131751, 505979, 505979, 131751, 5461, 1;
1, 21845, 976876, 6395471, 11433118, 6395471, 976876, 21845, 1;
1, 87381, 7089360, 75400800, 220599330, 220599330, 75400800, 7089360, 87381, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
@CachedFunction
def T(n,k,m): # A157154
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157155
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 156, 462, 156, 1, 1, 781, 5442, 5442, 781, 1, 1, 3906, 57263, 124860, 57263, 3906, 1, 1, 19531, 566153, 2335435, 2335435, 566153, 19531, 1, 1, 97656, 5396164, 38814088, 71413750, 38814088, 5396164, 97656, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 31, 31, 1;
1, 156, 462, 156, 1;
1, 781, 5442, 5442, 781, 1;
1, 3906, 57263, 124860, 57263, 3906, 1;
1, 19531, 566153, 2335435, 2335435, 566153, 19531, 1;
1, 97656, 5396164, 38814088, 71413750, 38814088, 5396164, 97656, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
@CachedFunction
def T(n,k,m): # A157155
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,4) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157156
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 43, 43, 1, 1, 259, 806, 259, 1, 1, 1555, 11720, 11720, 1555, 1, 1, 9331, 151215, 338770, 151215, 9331, 1, 1, 55987, 1828221, 7892635, 7892635, 1828221, 55987, 1, 1, 335923, 21286168, 162474781, 304389070, 162474781, 21286168, 335923, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 43, 43, 1;
1, 259, 806, 259, 1;
1, 1555, 11720, 11720, 1555, 1;
1, 9331, 151215, 338770, 151215, 9331, 1;
1, 55987, 1828221, 7892635, 7892635, 1828221, 55987, 1;
1, 335923, 21286168, 162474781, 304389070, 162474781, 21286168, 335923, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
@CachedFunction
def T(n,k,m): # A157156
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,5) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
Showing 1-10 of 22 results.