cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A157273 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 47, 47, 1, 1, 154, 590, 154, 1, 1, 477, 4498, 4498, 477, 1, 1, 1448, 28323, 71232, 28323, 1448, 1, 1, 4363, 162313, 816503, 816503, 162313, 4363, 1, 1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1, 1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 26 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,    12,       1;
  1,    47,      47,        1;
  1,   154,     590,      154,         1;
  1,   477,    4498,     4498,       477,         1;
  1,  1448,   28323,    71232,     28323,      1448,        1;
  1,  4363,  162313,   816503,    816503,    162313,     4363,       1;
  1, 13110,  882764,  7897486,  15979230,   7897486,   882764,   13110,     1;
  1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
  • Sage
    def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
    @CachedFunction
    def T(n,k,m):  # A157207
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2.
T(n, n-k, m) = T(n, k, m).

Extensions

Edited by G. C. Greubel, Feb 05 2022

A157147 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 110, 37, 1, 1, 83, 568, 568, 83, 1, 1, 177, 2415, 5534, 2415, 177, 1, 1, 367, 9137, 41027, 41027, 9137, 367, 1, 1, 749, 32104, 255155, 498814, 255155, 32104, 749, 1, 1, 1515, 107442, 1409814, 4845540, 4845540, 1409814, 107442, 1515, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			  1;
  1,    1;
  1,    5,      1;
  1,   15,     15,       1;
  1,   37,    110,      37,       1;
  1,   83,    568,     568,      83,       1;
  1,  177,   2415,    5534,    2415,     177,       1;
  1,  367,   9137,   41027,   41027,    9137,     367,      1;
  1,  749,  32104,  255155,  498814,  255155,   32104,    749,    1;
  1, 1515, 107442, 1409814, 4845540, 4845540, 1409814, 107442, 1515, 1;
		

Crossrefs

Programs

  • Maple
    A157147:= proc(n,k)
        option remember;
        if k < 0 or k> n then 0;
        elif k = 0 or k = n then 1;
        else (n-k+1)*procname(n-1,k-1) +(k+1)*procname(n-1,k) +k*(n-k)*procname(n-2,k-1);
        end if;
    end proc:
    seq(seq(A157147(n,k),k=0..n),n=0..10); # R. J. Mathar, Feb 06 2015
  • Mathematica
    T[n_, k_, m_]:= T[n,k,m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]];
    Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
  • Sage
    def T(n,k,m): # A157147
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 09 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1.
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 09 2022

A157148 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 33, 33, 1, 1, 112, 394, 112, 1, 1, 353, 3150, 3150, 353, 1, 1, 1080, 20719, 51192, 20719, 1080, 1, 1, 3265, 122535, 620415, 620415, 122535, 3265, 1, 1, 9824, 681040, 6312360, 12805614, 6312360, 681040, 9824, 1, 1, 29505, 3643980, 57451300, 209503086, 209503086, 57451300, 3643980, 29505, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     8,       1;
  1,    33,      33,        1;
  1,   112,     394,      112,         1;
  1,   353,    3150,     3150,       353,         1;
  1,  1080,   20719,    51192,     20719,      1080,        1;
  1,  3265,  122535,   620415,    620415,    122535,     3265,       1;
  1,  9824,  681040,  6312360,  12805614,   6312360,   681040,    9824,     1;
  1, 29505, 3643980, 57451300, 209503086, 209503086, 57451300, 3643980, 29505, 1;
		

Crossrefs

Cf. A007318 (m=0), A157147 (m=1), this sequence (m=2), A157149 (m=3), A157150 (m=4), A157151 (m=5).

Programs

  • Maple
    A157148 := proc(n,k)
        option remember;
        if k < 0 or k> n then 0;
        elif k = 0 or k = n then 1;
        else (2*(n-k)+1)*procname(n-1,k-1) + (2*k+1)*procname(n-1,k) + 2*k*(n-k)*procname(n-2,k-1);
        end if;
    end proc:
    seq(seq(A157148(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]];
    Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):  # A157148
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 2.
T(n, n-k, 2) = T(n, k, 2).

Extensions

Edited by G. C. Greubel, Jan 09 2022

A157149 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 11, 1, 1, 57, 57, 1, 1, 247, 930, 247, 1, 1, 1013, 10006, 10006, 1013, 1, 1, 4083, 89139, 225230, 89139, 4083, 1, 1, 16369, 719691, 3771323, 3771323, 719691, 16369, 1, 1, 65519, 5495836, 53239541, 108865438, 53239541, 5495836, 65519, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,    11,       1;
  1,    57,      57,        1;
  1,   247,     930,      247,         1;
  1,  1013,   10006,    10006,      1013,        1;
  1,  4083,   89139,   225230,     89139,     4083,       1;
  1, 16369,  719691,  3771323,   3771323,   719691,   16369,     1;
  1, 65519, 5495836, 53239541, 108865438, 53239541, 5495836, 65519, 1;
		

Crossrefs

Cf. A007318 (m=0), A157147 (m=1), A157148 (m=2), this sequence (m=3), A157150 (m=4), A157151 (m=5).
Cf. A289255.

Programs

  • Maple
    A157149 := proc(n,k)
        option remember;
        if k < 0 or k> n then 0;
        elif k = 0 or k = n then 1;
        else (3*(n-k)+1)*procname(n-1,k-1) + (3*k+1)*procname(n-1,k) + 3*k*(n-k)*procname(n-2,k-1);
        end if;
    end proc:
    seq(seq(A157149(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]];
    Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):  # A157149
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3.
T(n, n-k, 3) = T(n, k, 3).
T(n, 1, 3) = A289255(n). - G. C. Greubel, Jan 09 2022

Extensions

Edited by G. C. Greubel, Jan 09 2022

A157150 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 14, 1, 1, 87, 87, 1, 1, 460, 1790, 460, 1, 1, 2333, 24178, 24178, 2333, 1, 1, 11706, 271983, 693068, 271983, 11706, 1, 1, 58579, 2786993, 14794139, 14794139, 2786993, 58579, 1, 1, 292952, 27109300, 267169640, 547357078, 267169640, 27109300, 292952, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     14,        1;
  1,     87,       87,         1;
  1,    460,     1790,       460,         1;
  1,   2333,    24178,     24178,      2333,         1;
  1,  11706,   271983,    693068,    271983,     11706,        1;
  1,  58579,  2786993,  14794139,  14794139,   2786993,    58579,      1;
  1, 292952, 27109300, 267169640, 547357078, 267169640, 27109300, 292952, 1;
		

Crossrefs

Cf. A007318 (m=0), A157147 (m=1), A157148 (m=2), A157149 (m=3), this sequence (m=4), A157151 (m=5).

Programs

  • Maple
    A157150:= proc(n, k);
        if k<0 or nA157150(n, k), k=0..n), n=0..10); # R. J. Mathar, Feb 06 2015
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]];
    Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):  # A157150
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,4) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4.
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 09 2022

A157151 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 17, 1, 1, 123, 123, 1, 1, 769, 3046, 769, 1, 1, 4655, 49500, 49500, 4655, 1, 1, 27981, 673015, 1721070, 673015, 27981, 1, 1, 167947, 8363421, 44640435, 44640435, 8363421, 167947, 1, 1, 1007753, 98882848, 982172031, 2012583870, 982172031, 98882848, 1007753, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      17,        1;
  1,     123,      123,         1;
  1,     769,     3046,       769,          1;
  1,    4655,    49500,     49500,       4655,         1;
  1,   27981,   673015,   1721070,     673015,     27981,        1;
  1,  167947,  8363421,  44640435,   44640435,   8363421,   167947,       1;
  1, 1007753, 98882848, 982172031, 2012583870, 982172031, 98882848, 1007753, 1;
		

Crossrefs

Cf. A007318 (m=0), A157147 (m=1), A157148 (m=2), A157149 (m=3), A157150 (m=4), this sequence (m=5).

Programs

  • Maple
    A157151:= proc(n, k)
        if k<0 or nA157151(n, k), k=0..n), n=0..10); # R. J. Mathar, Feb 06 2015
  • Mathematica
    T[n_, k_, m_]:= T[n,k,m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]];
    Table[T[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
  • Sage
    def T(n,k,m): # A157147
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,5) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 09 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5.
T(n, n-k, 5) = T(n, k, 5).

Extensions

Edited by G. C. Greubel, Jan 09 2022

A157152 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 30, 15, 1, 1, 31, 108, 108, 31, 1, 1, 63, 359, 594, 359, 63, 1, 1, 127, 1145, 2875, 2875, 1145, 127, 1, 1, 255, 3568, 12985, 19246, 12985, 3568, 255, 1, 1, 511, 10966, 56306, 116640, 116640, 56306, 10966, 511, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    3,     1;
  1,    7,     7,      1;
  1,   15,    30,     15,      1;
  1,   31,   108,    108,     31,      1;
  1,   63,   359,    594,    359,     63,      1;
  1,  127,  1145,   2875,   2875,   1145,    127,      1;
  1,  255,  3568,  12985,  19246,  12985,   3568,    255,     1;
  1,  511, 10966,  56306, 116640, 116640,  56306,  10966,   511,    1;
  1, 1023, 33417, 238024, 665702, 918530, 665702, 238024, 33417, 1023, 1;
		

Crossrefs

Cf. A007318 (m=0), this sequence (m=1), A157153 (m=2), A157154 (m=3), A157155 (m=4), A157156 (m=5).

Programs

  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
    Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):  # A157152
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A000225(n). - G. C. Greubel, Jan 09 2022

Extensions

Edited by G. C. Greubel, Jan 09 2022

A157154 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 21, 1, 1, 85, 234, 85, 1, 1, 341, 2110, 2110, 341, 1, 1, 1365, 17163, 35882, 17163, 1365, 1, 1, 5461, 131751, 505979, 505979, 131751, 5461, 1, 1, 21845, 976876, 6395471, 11433118, 6395471, 976876, 21845, 1, 1, 87381, 7089360, 75400800, 220599330, 220599330, 75400800, 7089360, 87381, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     5,       1;
  1,    21,      21,        1;
  1,    85,     234,       85,         1;
  1,   341,    2110,     2110,       341,         1;
  1,  1365,   17163,    35882,     17163,      1365,        1;
  1,  5461,  131751,   505979,    505979,    131751,     5461,       1;
  1, 21845,  976876,  6395471,  11433118,   6395471,   976876,   21845,     1;
  1, 87381, 7089360, 75400800, 220599330, 220599330, 75400800, 7089360, 87381, 1;
		

Crossrefs

Cf. A007318 (m=0), A157152 (m=1), A157153 (m=2), this sequence (m=3), A157155 (m=4), A157156 (m=5).
Cf. A002450.

Programs

  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
    Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):  # A157154
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 3) = A002450(n). - G. C. Greubel, Jan 10 2022

Extensions

Edited by G. C. Greubel, Jan 10 2022

A157155 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 156, 462, 156, 1, 1, 781, 5442, 5442, 781, 1, 1, 3906, 57263, 124860, 57263, 3906, 1, 1, 19531, 566153, 2335435, 2335435, 566153, 19531, 1, 1, 97656, 5396164, 38814088, 71413750, 38814088, 5396164, 97656, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     6,       1;
  1,    31,      31,        1;
  1,   156,     462,      156,        1;
  1,   781,    5442,     5442,      781,        1;
  1,  3906,   57263,   124860,    57263,     3906,       1;
  1, 19531,  566153,  2335435,  2335435,   566153,   19531,     1;
  1, 97656, 5396164, 38814088, 71413750, 38814088, 5396164, 97656, 1;
		

Crossrefs

Cf. A007318 (m=0), A157152 (m=1), A157153 (m=2), A157154 (m=3), this sequence (m=4), A157156 (m=5).
Cf. A003463.

Programs

  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
    Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):  # A157155
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,4) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 4) = A003463(n). - G. C. Greubel, Jan 10 2022

Extensions

Edited by G. C. Greubel, Jan 10 2022

A157156 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 43, 43, 1, 1, 259, 806, 259, 1, 1, 1555, 11720, 11720, 1555, 1, 1, 9331, 151215, 338770, 151215, 9331, 1, 1, 55987, 1828221, 7892635, 7892635, 1828221, 55987, 1, 1, 335923, 21286168, 162474781, 304389070, 162474781, 21286168, 335923, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 24 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,      7,        1;
  1,     43,       43,         1;
  1,    259,      806,       259,         1;
  1,   1555,    11720,     11720,      1555,         1;
  1,   9331,   151215,    338770,    151215,      9331,        1;
  1,  55987,  1828221,   7892635,   7892635,   1828221,    55987,      1;
  1, 335923, 21286168, 162474781, 304389070, 162474781, 21286168, 335923, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
    Table[T[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):  # A157156
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
    flatten([[T(n,k,5) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 5) = A003464(n). - G. C. Greubel, Jan 10 2022

Extensions

Edited by G. C. Greubel, Jan 10 2022
Showing 1-10 of 22 results. Next