A157152 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 30, 15, 1, 1, 31, 108, 108, 31, 1, 1, 63, 359, 594, 359, 63, 1, 1, 127, 1145, 2875, 2875, 1145, 127, 1, 1, 255, 3568, 12985, 19246, 12985, 3568, 255, 1, 1, 511, 10966, 56306, 116640, 116640, 56306, 10966, 511, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 3, 1; 1, 7, 7, 1; 1, 15, 30, 15, 1; 1, 31, 108, 108, 31, 1; 1, 63, 359, 594, 359, 63, 1; 1, 127, 1145, 2875, 2875, 1145, 127, 1; 1, 255, 3568, 12985, 19246, 12985, 3568, 255, 1; 1, 511, 10966, 56306, 116640, 116640, 56306, 10966, 511, 1; 1, 1023, 33417, 238024, 665702, 918530, 665702, 238024, 33417, 1023, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]]; Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
Sage
@CachedFunction def T(n,k,m): # A157152 if (k==0 or k==n): return 1 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m) flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
Formula
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A000225(n). - G. C. Greubel, Jan 09 2022
Extensions
Edited by G. C. Greubel, Jan 09 2022