A157155 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4, read by rows.
1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 156, 462, 156, 1, 1, 781, 5442, 5442, 781, 1, 1, 3906, 57263, 124860, 57263, 3906, 1, 1, 19531, 566153, 2335435, 2335435, 566153, 19531, 1, 1, 97656, 5396164, 38814088, 71413750, 38814088, 5396164, 97656, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 31, 31, 1; 1, 156, 462, 156, 1; 1, 781, 5442, 5442, 781, 1; 1, 3906, 57263, 124860, 57263, 3906, 1; 1, 19531, 566153, 2335435, 2335435, 566153, 19531, 1; 1, 97656, 5396164, 38814088, 71413750, 38814088, 5396164, 97656, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]]; Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
Sage
@CachedFunction def T(n,k,m): # A157155 if (k==0 or k==n): return 1 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m) flatten([[T(n,k,4) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
Formula
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 4) = A003463(n). - G. C. Greubel, Jan 10 2022
Extensions
Edited by G. C. Greubel, Jan 10 2022