cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157195 a(n) = 0 if n is 1 or a prime, otherwise a(n) = product of the proper divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 6, 0, 8, 3, 10, 0, 144, 0, 14, 15, 64, 0, 324, 0, 400, 21, 22, 0, 13824, 5, 26, 27, 784, 0, 27000, 0, 1024, 33, 34, 35, 279936, 0, 38, 39, 64000, 0, 74088, 0, 1936, 2025, 46, 0, 5308416, 7, 2500, 51, 2704, 0, 157464, 55, 175616, 57, 58, 0, 777600000
Offset: 1

Views

Author

Jaroslav Krizek, Feb 24 2009, Feb 27 2009

Keywords

Comments

a(n) = 0 if and only if n is a noncomposite number (cf. A008578). - Omar E. Pol, Aug 01 2012

Examples

			For n = 15 a(15) = 15 = 3*5.
		

Crossrefs

Programs

  • Mathematica
    If[#==1||PrimeQ[#],0,Times@@Most[Divisors[#]]]&/@Range[60] (* Harvey P. Dale, Jan 24 2014 *)
  • PARI
    a(n) = {if ((n == 1) || isprime(n), return (0)); d = divisors(n); prod(i = 2, #d - 1, d[i]);} \\ Michel Marcus, Aug 05 2013
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A157195(n): return 0 if (c:=divisor_count(n)) <= 2 else (isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2-1) # Chai Wah Wu, Jun 25 2022

Formula

a(pq) = pq, p,q = distinct primes. a(p^k) = p^((1/2*k*(k-1)), p = prime, k = integer >=2. a(c) = A007955(c)/c, c = composite number.

Extensions

Edited by N. J. A. Sloane, Mar 03 2009
Definition clarified by Harvey P. Dale, Jan 24 2014