A157209 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 3, read by rows.
1, 1, 1, 1, 11, 1, 1, 54, 54, 1, 1, 229, 822, 229, 1, 1, 932, 8368, 8368, 932, 1, 1, 3747, 72066, 174758, 72066, 3747, 1, 1, 15010, 570006, 2759750, 2759750, 570006, 15010, 1, 1, 60065, 4297714, 37366190, 73850596, 37366190, 4297714, 60065, 1, 1, 240288, 31495488, 460448520, 1591033788, 1591033788, 460448520, 31495488, 240288, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 11, 1; 1, 54, 54, 1; 1, 229, 822, 229, 1; 1, 932, 8368, 8368, 932, 1; 1, 3747, 72066, 174758, 72066, 3747, 1; 1, 15010, 570006, 2759750, 2759750, 570006, 15010, 1; 1, 60065, 4297714, 37366190, 73850596, 37366190, 4297714, 60065, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
f[n_,k_]:= If[k<=Floor[n/2], k, n-k]; T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]]; Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
Sage
def f(n,k): return k if (k <= n//2) else n-k @CachedFunction def T(n,k,m): # A157209 if (k==0 or k==n): return 1 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m) flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
Formula
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 3.
T(n, n-k, m) = T(n, k, m).
Extensions
Edited by G. C. Greubel, Jan 10 2022