A157246 Positive numbers y such that y^2 is of the form x^2+(x+343)^2 with integer x.
245, 265, 287, 343, 427, 493, 637, 833, 1097, 1295, 1715, 2275, 2693, 3577, 4753, 6317, 7483, 9947, 13223, 15665, 20825, 27685, 36805, 43603, 57967, 77063, 91297, 121373, 161357, 214513, 254135, 337855, 449155, 532117, 707413, 940457, 1250273
Offset: 1
Keywords
Examples
(-147, a(1)) = (-147, 245) is a solution: (-147)^2+(-147+343)^2 = 21609+38416 = 60025 = 245^2. (A118611(1), a(4)) = (0, 343) is a solution: 0^2+(0+343)^2 = 117649 = 343^2. (A118611(3), a(6)) = (132, 493) is a solution: 132^2+(132+343)^2 = 17424+225625 = 243049 = 493^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,6,0,0,0,0,0,0,-1).
Crossrefs
Programs
-
Mathematica
Sqrt[#]&/@Select[Table[x^2+(x+343)^2,{x,-150,885000}], IntegerQ[ Sqrt[#]]&] (* or *) LinearRecurrence[{0,0,0,0,0,0,6,0,0,0,0,0,0,-1},{245,265,287,343,427,493,637,833,1097,1295,1715,2275,2693,3577},40](* Harvey P. Dale, Dec 30 2011 *)
-
PARI
{forstep(n=-148, 1000000, [1, 3], if(issquare(n^2+(n+343)^2, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-7)-a(n-14) for n > 14; a(1)=245, a(2)=265, a(3)=287, a(4)=343, a(5)=427, a(6)=493, a(7)=637, a(8)=833, a(9)=1097, a(10)=1295, a(11)=1715, a(12)=2275, a(13)=2693, a(14)=3577.
G.f.: x * (1-x) * (245 +510*x +797*x^2 +1140*x^3 +1567*x^4 +2060*x^5 +2697*x^6 +2060*x^7 +1567*x^8 +1140*x^9 +797*x^10 +510*x^11 +245*x^12) / (1 -6*x^7 +x^14).
a(7*k-3) = 343*A001653(k) for k >= 1.
Extensions
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
Comments