A157247 Positive numbers y such that y^2 is of the form x^2+(x+2401)^2 with integer x.
1715, 1781, 1855, 2009, 2401, 2989, 3451, 3821, 4459, 5831, 6865, 7679, 9065, 12005, 15925, 18851, 21145, 25039, 33271, 39409, 44219, 52381, 69629, 92561, 109655, 123049, 145775, 193795, 229589, 257635, 305221, 405769, 539441, 639079, 717149
Offset: 1
Keywords
Examples
(-1029, a(1)) = (-1029, 1715) is a solution: (-1029)^2+(-1029+2401)^2 = 1058841+1882384 = 2941225 = 1715^2. (A118630(1), a(5)) = (0, 2401) is a solution: 0^2+(0+2401)^2 = 5764801 = 2401^2. (A118630(3), a(7)) = (924, 3451) is a solution: 924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
Crossrefs
Programs
-
Mathematica
Sqrt[#]&/@Select[Table[2x^2+4802x+5764801,{x,-1200,510000}], IntegerQ[ Sqrt[ #]]&] (* Harvey P. Dale, Jul 21 2011 *)
-
PARI
{forstep(n=-1032, 540000, [3 ,1], if(issquare(n^2+(n+2401)^2, &k), print1(k, ",")))}
Formula
a(n)=6*a(n-9)-a(n-18) for n > 18; a(1)=1715, a(2)=1781, a(3)=1855, a(4)=2009, a(5)=2401, a(6)=2989, a(7)=3451, a(8)=3821, a(9)=4459, a(10)=5831, a(11)=6865, a(12)=7679, a(13)=9065, a(14)=12005, a(15)=15925, a(16)=18851, a(17)=21145, a(18)=25039.
G.f.: x * (1-x) * (1715 +3496*x +5351*x^2 +7360*x^3 +9761*x^4 +12750*x^5 +16201*x^6 +20022*x^7 +24481*x^8 +20022*x^9 +16201*x^10 +12750*x^11 +9761*x^12 +7360*x^13 +5351*x^14 +3496*x^15 +1715*x^16) / (1 -6*x^9 +x^18).
a(9*k-4) = 2401*A001653(k) for k >= 1.
Extensions
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
Comments