A157257 Positive numbers y such that y^2 is of the form x^2+(x+41)^2 with integer x.
29, 41, 85, 89, 205, 481, 505, 1189, 2801, 2941, 6929, 16325, 17141, 40385, 95149, 99905, 235381, 554569, 582289, 1371901, 3232265, 3393829, 7996025, 18839021, 19780685, 46604249, 109801861, 115290281, 271629469, 639972145, 671961001
Offset: 1
Examples
(-20, a(1)) = (-20, 29) is a solution: (-20)^2+(-20+41)^2 = 400+441 = 841 = 29^2. (A129288(1), a(2)) = (0, 41) is a solution: 0^2+(0+41)^2 = 1681 = 41^2. (A129288(3), a(4)) = (39, 89) is a solution: 39^2+(39+41)^2 = 1521+6400 = 7921 = 89^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1001
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
Q:=Rationals(); R
:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6))) // G. C. Greubel, Feb 04 2018 -
Mathematica
CoefficientList[Series[(1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6), {x,0,50}], x] (* G. C. Greubel, Feb 04 2018 *)
-
PARI
{forstep(n=-20, 500000000, [3 ,1], if(issquare(n^2+(n+41)^2, &k), print1(k, ",")))}
-
PARI
x='x+O('x^30); Vec((1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6)) \\ G. C. Greubel, Feb 04 2018
Formula
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=29, a(2)=41, a(3)=85, a(4)=89, a(5)=205, a(6)=481.
G.f.: (1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 41*A001653(k) for k >= 1.
Comments