cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A129288 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 41)^2 = y^2.

Original entry on oeis.org

0, 36, 39, 123, 319, 336, 820, 1960, 2059, 4879, 11523, 12100, 28536, 67260, 70623, 166419, 392119, 411720, 970060, 2285536, 2399779, 5654023, 13321179, 13987036, 32954160, 77641620, 81522519, 192071019, 452528623, 475148160, 1119472036
Offset: 1

Views

Author

Mohamed Bouhamida, May 26 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+41, y).
Corresponding values y of solutions (x, y) are in A157257.
lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (7 + 2*sqrt(2))/(7 - 2*sqrt(2)) for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3 + 2*sqrt(2))*(7 - 2*sqrt(2))^2/(7 + 2*sqrt(2))^2 for n mod 3 = 0.

Crossrefs

Cf. A157257, A001652, A156035 (decimal expansion of 3 + 2*sqrt(2)), A157258 (decimal expansion of 7 + 2*sqrt(2)), A157259 (decimal expansion of 7 - 2*sqrt(2)), A157260 (decimal expansion of (7 + 2*sqrt(2))/(7 - 2*sqrt(2))).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(36+3*x+84*x^2-20*x^3-x^4-20*x^5)/((1-x)*(1-6*x^3+ x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,36,39,123,319,336,820},40] (* Harvey P. Dale, Jan 18 2015 *)
  • PARI
    forstep(n=0, 1200000000, [3 ,1], if(issquare(2*n^2+82*n+1681), print1(n, ",")))
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 82 for n > 6; a(1)=0, a(2)=36, a(3)=39, a(4)=123, a(5)=319, a(6)=336.
G.f.: x*(36 + 3*x + 84*x^2 - 20*x^3 - x^4 - 20*x^5)/((1-x)*(1 - 6*x^3 + x^6)).
a(3*k + 1) = 41*A001652(k) for k >= 0.

Extensions

Edited and extended by Klaus Brockhaus, Feb 26 2009

A157259 Decimal expansion of 7 - 2*sqrt(2).

Original entry on oeis.org

4, 1, 7, 1, 5, 7, 2, 8, 7, 5, 2, 5, 3, 8, 0, 9, 9, 0, 2, 3, 9, 6, 6, 2, 2, 5, 5, 1, 5, 8, 0, 6, 0, 3, 8, 4, 2, 8, 6, 0, 6, 5, 6, 2, 4, 9, 2, 4, 6, 1, 0, 3, 8, 5, 3, 6, 4, 6, 6, 4, 0, 5, 2, 4, 0, 1, 8, 5, 3, 5, 0, 4, 3, 0, 7, 5, 7, 8, 5, 9, 2, 2, 2, 9, 9, 2, 2, 4, 9, 3, 1, 3, 4, 4, 7, 1, 6, 8, 5, 4, 5, 2, 9, 9, 7
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {1, 2}, b = A129288.
lim_{n -> infinity} b(n)/b(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {0, 2}, b = A157257.

Examples

			7 - 2*sqrt(2) = 4.17157287525380990239...
		

Crossrefs

Cf. A129288, A157257, A157258 (decimal expansion of 7+2*sqrt(2)), A157260 (decimal expansion of (7+2*sqrt(2))/(7-2*sqrt(2))).

Programs

Formula

Equals 3 + Sum_{k>=0} binomial(2*k,k)/((k+1) * 8^k). - Amiram Eldar, Aug 03 2020
Equals 4 + exp(-arccosh(3)). - Amiram Eldar, Jul 06 2023
Equals 4 + (2-sqrt(2))/(2+sqrt(2)). - Davide Rotondo, Jun 08 2024

A157258 Decimal expansion of 7 + 2*sqrt(2).

Original entry on oeis.org

9, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7, 0, 0, 2
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {1, 2}, b = A129288.
lim_{n -> infinity} b(n)/b(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {0, 2}, b = A157257.

Examples

			7 + 2*sqrt(2) = 9.82842712474619009760...
		

Crossrefs

Cf. A129288, A157257, A157259 (decimal expansion of 7-2*sqrt(2)), A157260 (decimal expansion of (7+2*sqrt(2))/(7-2*sqrt(2))).

Programs

Formula

Equals 4 + A156035. - R. J. Mathar, Feb 27 2009

A157260 Decimal expansion of (7 + 2*sqrt(2))/(7 - 2*sqrt(2)).

Original entry on oeis.org

2, 3, 5, 6, 0, 4, 8, 2, 8, 6, 4, 9, 8, 6, 9, 9, 0, 5, 7, 7, 1, 8, 2, 2, 6, 4, 4, 5, 8, 0, 1, 7, 4, 5, 0, 2, 9, 2, 6, 7, 0, 9, 2, 9, 8, 8, 0, 6, 2, 3, 0, 6, 0, 0, 1, 1, 9, 3, 8, 3, 0, 0, 6, 4, 9, 6, 9, 2, 8, 0, 7, 1, 6, 9, 9, 8, 5, 1, 2, 1, 2, 4, 0, 9, 2, 9, 4, 7, 5, 8, 4, 4, 1, 8, 8, 7, 7, 1, 7, 1, 6, 2, 3, 9, 1
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A129288.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A157257.

Examples

			(7 +2*sqrt(2))/(7 -2*sqrt(2)) = 2.35604828649869905771...
		

Crossrefs

Cf. A129288, A157257, A157258 (decimal expansion of 7+2*sqrt(2)), A157259 (decimal expansion of 7-2*sqrt(2)).
Cf. A157300 (decimal expansion of (1683+58*sqrt(2))/41^2). - Klaus Brockhaus, May 01 2009

Programs

  • Magma
    [(7+2*Sqrt(2))/(7-2*Sqrt(2))]; // G. C. Greubel, Nov 28 2017
  • Mathematica
    RealDigits[(7 + 2*Sqrt[2])/(7 - 2*Sqrt[2]), 10, 50][[1]] (* G. C. Greubel, Nov 28 2017 *)
  • PARI
    (7+2*sqrt(2))/(7-2*sqrt(2)) \\ G. C. Greubel, Nov 28 2017
    

Formula

Equals (57 + 28*sqrt(2))/41. - Klaus Brockhaus, May 01 2009

A157300 Decimal expansion of (1683 + 58*sqrt(2))/41^2.

Original entry on oeis.org

1, 0, 4, 9, 9, 8, 4, 7, 6, 3, 0, 0, 8, 7, 0, 8, 8, 1, 1, 9, 1, 5, 8, 2, 2, 6, 9, 2, 4, 4, 7, 4, 4, 9, 4, 2, 8, 0, 5, 2, 9, 6, 9, 0, 4, 7, 4, 5, 5, 0, 0, 4, 7, 5, 2, 0, 7, 8, 6, 7, 1, 8, 7, 6, 7, 4, 2, 0, 9, 5, 4, 6, 9, 2, 1, 5, 2, 3, 0, 3, 4, 3, 9, 9, 3, 6, 4, 8, 1, 1, 2, 4, 2, 7, 7, 2, 3, 5, 0, 4, 5, 9, 1, 6, 8
Offset: 1

Views

Author

Klaus Brockhaus, May 01 2009

Keywords

Comments

Limit_{n -> oo} b(n)/b(n-1) = (1683+58*sqrt(2))/41^2 for n mod 3 = 0, b = A129288.
Limit_{n -> oo} b(n)/b(n-1) = (1683+58*sqrt(2))/41^2 for n mod 3 = 1, b = A157257.

Examples

			(1683+58*sqrt(2))/41^2 = 1.04998476300870881191...
		

Crossrefs

Cf. A129288, A157257, A002193 (decimal expansion of sqrt(2)), A157260 (decimal expansion of (57+28*sqrt(2))/41).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (1683+58*Sqrt(2))/41^2; // G. C. Greubel, Sep 28 2018
  • Maple
    evalf((1683+58*sqrt(2))/41^2,120); # Muniru A Asiru, Sep 28 2018
  • Mathematica
    RealDigits[(1683+58Sqrt[2])/41^2,10,120][[1]] (* Harvey P. Dale, May 05 2014 *)
  • PARI
    default(realprecision, 100); (1683+58*sqrt(2))/41^2 \\ G. C. Greubel, Sep 28 2018
    

Formula

Equals (58+sqrt(2))/(58-sqrt(2)).
Equals (3+2*sqrt(2))*(7-2*sqrt(2))^2/(7+2*sqrt(2))^2.
Showing 1-5 of 5 results.